106 research outputs found

    Power-law cosmological solution derived from DGP brane with a brane tachyon field

    Full text link
    By studying a tachyon field on the DGP brane model, in order to embed the 4D standard Friedmann equation with a brane tachyon field in 5D bulk, the metric of the 5D spacetime is presented. Then, adopting the inverse square potential of tachyon field, we obtain an expanding universe with power-law on the brane and an exact 5D solution.Comment: 8 pages, 1 figure, accepted by IJMP

    Statefinder Parameters for Interacting Phantom Energy with Dark Matter

    Get PDF
    We apply in this paper the statefinder parameters to the interacting phantom energy with dark matter. There are two kinds of scaling solutions in this model. It is found that the evolving trajectories of these two scaling solutions in the statefinder parameter plane are quite different, and that are also different from the statefinder diagnostic of other dark energy models.Comment: 9 pages, 12 figures, some references are added, some words are modifie

    The development of Y Ba2Cu3Ox thin films using a fluorine-free sol–gel approach for coated conductors

    Full text link
    Despite great success in the TFA methods of depositing Y Ba2Cu3OxΒ (YBCO) thin films for coated conductors, critical issues involved in removing BaCO3 have not entirely been settled. There could be other possible ways of dealing with carbon that remains in the film. We have recently developed a fluorine-free sol–gel synthesis with several important advantages including precursor solution stability, improved film density, and elimination of HF during processing. With this approach, high-quality YBCO films have been developed on single crystal substrates with the transport Jc s up to 106Β AΒ cmβˆ’2. In this study, the precursor solution stoichiometry was altered and its effects on superconducting properties were studied. The fluorine-free sol–gel-derived films on the LaAlO3Β (LAO) substrate exhibited epitaxial growth with excellent in-Β and out-of-plane texture. Experimental details are reported on the sol–gel synthesis chemistry and XRD and TEM characterization of the YBCO thin films. Also discussed is the underlying formation mechanism of the YBCO phase during the synthesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48992/2/sust4_12_011.pd

    Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping

    Get PDF
    Interactions of E. coli lac repressor (LacR) with a pair of operator sites on the same DNA molecule can lead to the formation of looped nucleoprotein complexes both in vitro and in vivo. As a major paradigm for loop-mediated gene regulation, parameters such as operator affinity and spacing, repressor concentration, and DNA bending induced by specific or non-specific DNA-binding proteins (e.g., HU), have been examined extensively. However, a complete and rigorous model that integrates all of these aspects in a systematic and quantitative treatment of experimental data has not been available. Applying our recent statistical-mechanical theory for DNA looping, we calculated repression as a function of operator spacing (58–156 bp) from first principles and obtained excellent agreement with independent sets of in-vivo data. The results suggest that a linear extended, as opposed to a closed v-shaped, LacR conformation is the dominant form of the tetramer in vivo. Moreover, loop-mediated repression in wild-type E. coli strains is facilitated by decreased DNA rigidity and high levels of flexibility in the LacR tetramer. In contrast, repression data for strains lacking HU gave a near-normal value of the DNA persistence length. These findings underscore the importance of both protein conformation and elasticity in the formation of small DNA loops widely observed in vivo, and demonstrate the utility of quantitatively analyzing gene regulation based on the mechanics of nucleoprotein complexes

    Referral Incentive Strategy Based on Social Networks

    No full text
    • …
    corecore