358,742 research outputs found

    Influence of the relict cosmological constant on accretion discs

    Full text link
    Surprisingly, the relict cosmological constant has a crucial influence on properties of accretion discs orbiting black holes in quasars and active galactic nuclei. We show it by considering basic properties of both the geometrically thin and thick accretion discs in the Kerr-de Sitter black-hole (naked-singularity) spacetimes. Both thin and thick discs must have an outer edge allowing outflow of matter into the outer space, located nearby the so called static radius, where the gravitational attraction of a black hole is balanced by the cosmological repulsion. Jets produced by thick discs can be significantly collimated after crossing the static radius. Extension of discs in quasars is comparable with extension of the associated galaxies, indicating a possibility that the relict cosmological constant puts an upper limit on extension of galaxies.Comment: 15 pages, 4 figures, invited pape

    Conditions for Nondistortion Interrogation of Quantum System

    Full text link
    Under some physical considerations, we present a universal formulation to study the possibility of localizing a quantum object in a given region without disturbing its unknown internal state. When the interaction between the object and probe wave function takes place only once, we prove the necessary and sufficient condition that the object's presence can be detected in an initial state preserving way. Meanwhile, a conditioned optimal interrogation probability is obtained.Comment: 5 pages, Revtex, 1 figures, Presentation improved, corollary 1 added. To appear in Europhysics Letter

    Non-affine response: jammed packings versus spring networks

    Get PDF
    We compare the elastic response of spring networks whose contact geometry is derived from real packings of frictionless discs, to networks obtained by randomly cutting bonds in a highly connected network derived from a well-compressed packing. We find that the shear response of packing-derived networks, and both the shear and compression response of randomly cut networks, are all similar: the elastic moduli vanish linearly near jamming, and distributions characterizing the local geometry of the response scale with distance to jamming. Compression of packing-derived networks is exceptional: the elastic modulus remains constant and the geometrical distributions do not exhibit simple scaling. We conclude that the compression response of jammed packings is anomalous, rather than the shear response.Comment: 6 pages, 6 figures, submitted to ep

    Helium star evolutionary channel to super-Chandrasekhar mass type Ia supernovae

    Full text link
    Recent discovery of several overluminous type Ia supernovae (SNe Ia) indicates that the explosive masses of white dwarfs may significantly exceed the canonical Chandrasekhar mass limit. Rapid differential rotation may support these massive white dwarfs. Based on the single-degenerate scenario, and assuming that the white dwarfs would differentially rotate when the accretion rate M˙>3×10−7M⊙yr−1\dot{M}>3\times 10^{-7}M_{\odot}\rm yr^{-1}, employing Eggleton's stellar evolution code we have performed the numerical calculations for ∌\sim 1000 binary systems consisting of a He star and a CO white dwarf (WD). We present the initial parameters in the orbital period - helium star mass plane (for WD masses of 1.0M⊙1.0 M_{\odot} and 1.2M⊙1.2 M_{\odot}, respectively), which lead to super-Chandrasekhar mass SNe Ia. Our results indicate that, for an initial massive WD of 1.2M⊙1.2 M_{\odot}, a large number of SNe Ia may result from super-Chandrasekhar mass WDs, and the highest mass of the WD at the moment of SNe Ia explosion is 1.81 M⊙M_\odot, but very massive (>1.85M⊙>1.85M_{\odot}) WDs cannot be formed. However, when the initial mass of WDs is 1.0M⊙1.0 M_{\odot}, the explosive masses of SNe Ia are nearly uniform, which is consistent with the rareness of super-Chandrasekhar mass SNe Ia in observations.Comment: 6 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    Nonextensive entropy approach to space plasma fluctuations and turbulence

    Get PDF
    Spatial intermittency in fully developed turbulence is an established feature of astrophysical plasma fluctuations and in particular apparent in the interplanetary medium by in situ observations. In this situation the classical Boltzmann-Gibbs extensive thermo-statistics, applicable when microscopic interactions and memory are short ranged, fails. Upon generalization of the entropy function to nonextensivity, accounting for long-range interactions and thus for correlations in the system, it is demonstrated that the corresponding probability distributions (PDFs) are members of a family of specific power-law distributions. In particular, the resulting theoretical bi-kappa functional reproduces accurately the observed global leptokurtic, non-Gaussian shape of the increment PDFs of characteristic solar wind variables on all scales. Gradual decoupling is obtained by enhancing the spatial separation scale corresponding to increasing kappa-values in case of slow solar wind conditions where a Gaussian is approached in the limit of large scales. Contrary, the scaling properties in the high speed solar wind are predominantly governed by the mean energy or variance of the distribution. The PDFs of solar wind scalar field differences are computed from WIND and ACE data for different time-lags and bulk speeds and analyzed within the nonextensive theory. Consequently, nonlocality in fluctuations, related to both, turbulence and its large scale driving, should be related to long-range interactions in the context of nonextensive entropy generalization, providing fundamentally the physical background of the observed scale dependence of fluctuations in intermittent space plasmas.Comment: 21 pages, 8 figures, accepted for publication, to appear in Advances in Geosciences 2, chapter 04, 2006 (with minor corrections
    • 

    corecore