8 research outputs found
Long-term trihexyphenidyl exposure alters neuroimmune response and inflammation in aging rat: relevance to age and Alzheimer’s disease
Who fans the flames of Alzheimer's disease brains? Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways
Neurodegeneration, induced by misfolded tau protein, and neuroinflammation, driven by glial cells, represent the salient features of Alzheimer's disease (AD) and related human tauopathies. While tau neurodegeneration significantly correlates with disease progression, brain inflammation seems to be an important factor in regulating the resistance or susceptibility to AD neurodegeneration. Previously, it has been shown that there is a reciprocal relationship between the local inflammatory response and neurofibrillary lesions. Numerous independent studies have reported that inflammatory responses may contribute to the development of tau pathology and thus accelerate the course of disease. It has been shown that various cytokines can significantly affect the functional and structural properties of intracellular tau. Notwithstanding, anti-inflammatory approaches have not unequivocally demonstrated that inhibition of the brain immune response can lead to reduction of neurofibrillary lesions. On the other hand, our recent data show that misfolded tau could represent a trigger for microglial activation, suggesting the dual role of misfolded tau in the Alzheimer's disease inflammatory cascade. On the basis of current knowledge, we can conclude that misfolded tau is located at the crossroad of the neurodegenerative and neuroinflammatory pathways. Thus disease-modified tau represents an important target for potential therapeutic strategies for patients with Alzheimer's disease
Genetic Polymorphisms of a Novel Vascular Susceptibility Gene, Ninjurin2 (NINJ2), Are Associated with a Decreased Risk of Alzheimer's Disease
Immunization in Alzheimer’s disease: Naïve hope or realistic clinical potential?
There has been considerable recent interest in vaccination of patients by immunotherapy as a potentially clinically useful methodology for combating histopathological changes in Alzheimer\u27s disease (AD). The focus of the majority of this research has been on (1) active immunotherapy using the pre-aggregated synthetic β-amyloid (Aβ) 42 preparation AN1792 vaccine (QS-21), or (2) passive immunization using injections of already prepared polyclonal anti-Aβ antibodies (intravenous immunoglobulin). These two clinical approaches to the treatment of patients with AD represent the focus of this review. We conclude here that, with certain caveats, immunization offers further potential as a technique for the treatment (and possible prevention) of AD. New studies are seeking to develop and apply safer vaccines that do not result in toxicity and neuroinflammation. Nevertheless, caution is warranted, and future clinical investigations are required to tackle key outstanding issues. These include the need to demonstrate efficacy in humans as well as animal models (especially with respect to the potentially toxic side effects of immunotherapy), and fine-tuning in safely guiding the immune response. The issue of defining necessary and sufficient criteria for determining clinical efficacy remains an additional important issue for future immunization trials. The vaccination methodology appears to offer substantial current promise for clearing both soluble and aggregated amyloid in AD. However, it remains to be determined whether this approach will help to repair already damaged neural systems in the disease, and the extent to which vaccination-driven amyloid clearance will impact beneficially on patients\u27 neurocognitive capacity and their functional status. The outcomes of future studies will be important both clinically and scientifically: an important further test of the validity of the amyloid hypothesis of AD is to evaluate the impact of an effective anti-amyloid strategy on the functional status of patients with this disease
