13 research outputs found

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures

    Multiple kinetic Langmuir modeling to predict the environmental behaviour of As(V) in soils

    No full text
    A soil with a relatively high Fe content (2.82% [w/w]) was loaded for up to one year with As(v) by equilibrating it with a solution containing 1000 mg l(-1) As(v) at a soil mass-to-solution ratio of 0.1 kg l(-1). The incorporation of As(v) into the soil and its distribution over the soil phases were monitored by sampling at strategic time intervals using an operationally defined five-step sequential extraction procedure (Wenzel et al., Anal. Chim. Acta, 2001, 436, 309) and subsequent As measurement. A multiple kinetic Langmuir model was developed to retrieve the dynamic parameters (adsorption and desorption rate constants, capacities and Langmuir equilibrium constants) for each of the soil phases by numerical fitting of the experimental adsorption data to the model. Under the equilibration conditions used the adsorption rate constants for all five operationally defined soil phases were very similar but the desorption rate constants decreased by a factor of ca. 150 from soil phase 1 (non-specifically sorbed As) to 5 (residual phases). This implies that As(v) incorporation "deeper" into the soil leads to stronger binding which is associated with the Langmuir equilibrium constants (adsorption rate constants/desorption rate constants). Equilibration of the soil with As(v) was complete in ca. 10 days with As(v) predominantly bound to soil phase 2 (specifically sorbed As) and soil phase 3 (amorphous and poorly crystalline hydrous oxides). X-Ray absorption spectroscopy techniques revealed that these binding characteristics may be related to adsorption of As(v) on Si- and/or Al-containing structures and natural hydrous iron oxide (HFO) surface sites, respectively. Since the model is independent of the initial As(v) concentration in the solution and the soil mass-to-solution ratio, the behaviour of the thus characterized soil-As(v) system can be predicted for a range of conditions. Simulations showed that in an accidental As(v) spill the soil studied would actively scavenge As(v) by instantaneous adsorption onto all soil phases followed by redistribution of As(v) from weaker binding sites to stronger ones over time

    Accumulation Features of Arsenic Species in Various Fishes Collected from Coastal Cities in Korea

    No full text
    In this study, 36 fish species were collected from three coastal cities in Korea to investigate levels and patterns of six arsenicals (arsenite: As (III), arsenate: As (V), arsenocholine: AsC, arsenobetaine: AsB, monomethylarsonic acid: MMA, and dimethylarsinic acid: DMA). The levels of ???6 As in the different fish species varied substantially, ranging from 0.02 ??g As/g ww (Islaeli carp) to 9.65 ??g As/g ww (Skate ray) with a median of 0.40 ??g As/g ww. All the arsenicals in marine fishes showed higher levels than those in freshwater fishes due to fish feed living in saline water. Overall, marine carnivorous fishes seem to be more contaminated with arsenic. For all the fish samples, AsB (mean fraction: 90.6%) was dominant among the six arsenicals, indicating biomethylation of inorganic arsenic and accumulation of AsB. Fish species with high water contents showed elevated levels of As (III), but there was no further significant correlations between arsenicals and water/lipid contents. Concentrations of As (V) were significantly lower than those of As (III), which implies that As (V) is reduced during biomethylation of inorganic arsenic. Consequently, we hypothesize that the toxicity of arsenic (mainly derived from As (III)) can be increased by the reduction of As (V), especially for the fish species with higher water contents.close

    Atomic Absorption, Atomic Emission, and Flame Emission Spectrometry

    No full text
    corecore