46,349 research outputs found

    Top-N Recommendation on Graphs

    Full text link
    Recommender systems play an increasingly important role in online applications to help users find what they need or prefer. Collaborative filtering algorithms that generate predictions by analyzing the user-item rating matrix perform poorly when the matrix is sparse. To alleviate this problem, this paper proposes a simple recommendation algorithm that fully exploits the similarity information among users and items and intrinsic structural information of the user-item matrix. The proposed method constructs a new representation which preserves affinity and structure information in the user-item rating matrix and then performs recommendation task. To capture proximity information about users and items, two graphs are constructed. Manifold learning idea is used to constrain the new representation to be smooth on these graphs, so as to enforce users and item proximities. Our model is formulated as a convex optimization problem, for which we need to solve the well-known Sylvester equation only. We carry out extensive empirical evaluations on six benchmark datasets to show the effectiveness of this approach.Comment: CIKM 201

    The short-time critical behaviour of the Ginzburg-Landau model with long-range interaction

    Full text link
    The renormalisation group approach is applied to the study of the short-time critical behaviour of the dd-dimensional Ginzburg-Landau model with long-range interaction of the form pσsps−pp^{\sigma} s_{p}s_{-p} in momentum space. Firstly the system is quenched from a high temperature to the critical temperature and then relaxes to equilibrium within the model A dynamics. The asymptotic scaling laws and the initial slip exponents θ′\theta^{\prime} and θ\theta of the order parameter and the response function respectively, are calculated to the second order in ϵ=2σ−d\epsilon=2\sigma-d.Comment: 18 pages, 4 figures, 1 tabl

    Neutrino Masses, Lepton Flavor Mixing and Leptogenesis in the Minimal Seesaw Model

    Full text link
    We present a review of neutrino phenomenology in the minimal seesaw model (MSM), an economical and intriguing extension of the Standard Model with only two heavy right-handed Majorana neutrinos. Given current neutrino oscillation data, the MSM can predict the neutrino mass spectrum and constrain the effective masses of the tritium beta decay and the neutrinoless double-beta decay. We outline five distinct schemes to parameterize the neutrino Yukawa-coupling matrix of the MSM. The lepton flavor mixing and baryogenesis via leptogenesis are investigated in some detail by taking account of possible texture zeros of the Dirac neutrino mass matrix. We derive an upper bound on the CP-violating asymmetry in the decay of the lighter right-handed Majorana neutrino. The effects of the renormalization-group evolution on the neutrino mixing parameters are analyzed, and the correlation between the CP-violating phenomena at low and high energies is highlighted. We show that the observed matter-antimatter asymmetry of the Universe can naturally be interpreted through the resonant leptogenesis mechanism at the TeV scale. The lepton-flavor-violating rare decays, such as μ→e+γ\mu \to e + \gamma, are also discussed in the supersymmetric extension of the MSM.Comment: 50 pages, 22 EPS figures, macro file ws-ijmpe.cls included, accepted for publication in Int. J. Mod. Phys.
    • …
    corecore