50 research outputs found

    Electrocardiographic changes in patients undergoing targeted temperature management

    Full text link
    ObjectivesTargeted temperature management is the recommended therapy for comatose patients after an out‐of‐hospital cardiac arrest resuscitation due to the reduction in neurological damage and improved outcomes. However, there may result in electrocardiographic instability depending on the degree of targeted temperature management, including minor or life‐threatening dysrhythmias or conduction delays. This project aims to describe the frequency of ECG interval changes and clinically relevant dysrhythmias in targeted temperature management patients.MethodsThis is a retrospective observational study from January 2009 to December 2015. Patients who qualified for the study had a non‐traumatic cardiac arrest with a return of spontaneous circulation, received targeted temperature management at 33.5°C for 24 hours followed by 16 hours of rewarming. ECG interval changes and dysrhythmias were recorded immediately after return of spontaneous circulation, and at 24 and 48 hours post return of spontaneous circulation.ResultsA total of 322 patients (age 61.0 ± 16.9 years) had targeted temperature management initiated during the study period, of which 169 had complete data and 13 died prior to completing 24 hours of hypothermia. There were statistically significant changes during targeted temperature management in heart rate (96.7 ± 26.0/min before targeted temperature management; 69.5 ± 19.1/min during, P < 0.001), QRS duration (115.1 ± 32.6 ms before targeted temperature management; 107.8 ± 27.9 ms during targeted temperature management, P < 0.001), and QTc (486.3 ± 52.8 ms before targeted temperature management; 526.9 ± 61.7 ms during targeted temperature management, P < 0.001). There were cardiac dysrhythmias that received treatment during cooling and rewarming.ConclusionDuring the period of targeted temperature management and rewarming, we observed few self‐limiting ECG interval changes and no clinically significant dysrhythmias in this population during the period of targeted temperature management.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156464/2/emp212104_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156464/1/emp212104.pd

    Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis.

    Get PDF
    Acute Tubular Necrosis (ATN) causes severe damage to the kidney epithelial tubular cells and is often associated with severe renal dysfunction. Stem-cell based therapies may provide alternative approaches to treating of ATN. We have previously shown that clonal c-kit(pos) stem cells, derived from human amniotic fluid (hAFSC) can be induced to a renal fate in an ex-vivo system. Herein, we show for the first time the successful therapeutic application of hAFSC in a mouse model with glycerol-induced rhabdomyolysis and ATN. When injected into the damaged kidney, luciferase-labeled hAFSC can be tracked using bioluminescence. Moreover, we show that hAFSC provide a protective effect, ameliorating ATN in the acute injury phase as reflected by decreased creatinine and BUN blood levels and by a decrease in the number of damaged tubules and apoptosis therein, as well as by promoting proliferation of tubular epithelial cells. We show significant immunomodulatory effects of hAFSC, over the course of ATN. We therefore speculate that AFSC could represent a novel source of stem cells that may function to modulate the kidney immune milieu in renal failure caused by ATN

    Metabolism of Orthotopic Mouse Brain Tumor Models

    No full text
    We used magnetic resonance spectroscopy to determine whether orthotopic mouse brain tumors grown as xenografts in immunocompromised mice either from human brain tumor cells implanted immediately after surgery or from cultured human tumor lines show metabolic profiles comparable to those of the original tumors. Using a 7 T scanner, spectra were acquired from mice with a human atypical teratoid/rhabdoid tumor (AT/RT) either implanted directly from the surgical specimen or first grown in culture, directly implanted choroid plexus carcinoma (CPC), and two medulloblastoma cell lines. The results were compared with spectra from these same tumors or tumor types in patients and with controls. Metabolic variability of tumors from a single cell line was also evaluated using the medulloblastoma lines. The main metabolic features of human tumors were qualitatively replicated in xenografts. AT/RTs in mice exhibited choline, creatine, and myo -inositol levels comparable to those observed in the patient. As in patients, choline was prominent in experimental CPC. Tumors from a single cell line were comparable. Significant correlations were found with key metabolites in humans and mice; however, differences including lower lipids in the implanted AT/RTs than in patient spectra and taurine observed in all animal spectra were also noted. The causes of these dissimilarities warrant further investigation
    corecore