21,824 research outputs found
TSEP: Threshold-sensitive Stable Election Protocol for WSNs
Wireless Sensor Networks (WSNs) are expected to find wide applicability and
increasing deployment in near future. In this paper, we propose a new protocol,
Threshold Sensitive Stable Election Protocol (TSEP), which is reactive protocol
using three levels of heterogeneity. Reactive networks, as opposed to proactive
networks, respond immediately to changes in relevant parameters of interest. We
evaluate performance of our protocol for a simple temperature sensing
application and compare results of protocol with some other protocols LEACH,
DEEC, SEP, ESEP and TEEN. And from simulation results it is observed that
protocol outperforms concerning life time of sensing nodes used.Comment: 10th IEEE International Conference on Frontiers of Information
Technology (FIT 12), 201
M-ATTEMPT: A New Energy-Efficient Routing Protocol for Wireless Body Area Sensor Networks
In this paper, we propose a new routing protocol for heterogeneous Wireless
Body Area Sensor Networks (WBASNs); Mobility-supporting Adaptive
Threshold-based Thermal-aware Energy-efficientMulti-hop ProTocol (M-ATTEMPT). A
prototype is defined for employing heterogeneous sensors on human body. Direct
communication is used for real-time traffic (critical data) or on-demand data
while Multi-hop communication is used for normal data delivery. One of the
prime challenges in WBASNs is sensing of the heat generated by the implanted
sensor nodes. The proposed routing algorithm is thermal-aware which senses the
link Hot-spot and routes the data away from these links. Continuous mobility of
human body causes disconnection between previous established links. So,
mobility support and energy-management is introduced to overcome the problem.
Linear Programming (LP) model for maximum information extraction and minimum
energy consumption is presented in this study. MATLAB simulations of proposed
routing algorithm are performed for lifetime and successful packet delivery in
comparison with Multi-hop communication. The results show that the proposed
routing algorithm has less energy consumption and more reliable as compared to
Multi-hop communication.Comment: arXiv admin note: substantial text overlap with arXiv:1208.609
On Modeling Geometric Joint Sink Mobility with Delay-Tolerant Cluster-less Wireless Sensor Networks
Moving Sink (MS) in Wireless Sensor Networks (WSNs) has appeared as a
blessing because it collects data directly from the nodes where the concept of
relay nodes is becomes obsolete. There are, however, a few challenges to be
taken care of, like data delay tolerance and trajectory of MS which is NP-hard.
In our proposed scheme, we divide the square field in small squares. Middle
point of the partitioned area is the sojourn location of the sink, and nodes
around MS are in its transmission range, which send directly the sensed data in
a delay-tolerant fashion. Two sinks are moving simultaneously; one inside and
having four sojourn locations and other in outer trajectory having twelve
sojourn locations. Introduction of the joint mobility enhances network life and
ultimately throughput. As the MS comes under the NP-hard problem, we convert it
into a geometric problem and define it as, Geometric Sink Movement (GSM). A set
of linear programming equations has also been given in support of GSM which
prolongs network life time
HEER: Hybrid Energy Efficient Reactive Protocol for Wireless Sensor Networks
Wireless Sensor Networks (WSNs) consist of numerous sensors which send sensed
data to base station. Energy conservation is an important issue for sensor
nodes as they have limited power.Many routing protocols have been proposed
earlier for energy efficiency of both homogeneous and heterogeneous
environments. We can prolong our stability and network lifetime by reducing our
energy consumption. In this research paper, we propose a protocol designed for
the characteristics of a reactive homogeneous WSNs, HEER (Hybrid Energy
Efficient Reactive) protocol. In HEER, Cluster Head(CH) selection is based on
the ratio of residual energy of node and average energy of network. Moreover,
to conserve more energy, we introduce Hard Threshold (HT) and Soft Threshold
(ST). Finally, simulations show that our protocol has not only prolonged the
network lifetime but also significantly increased stability period.Comment: 2nd IEEE Saudi International Electronics, Communications and
Photonics Conference (SIECPC 13), 2013, Riyadh, Saudi Arabi
Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks
With increase in ageing population, health care market keeps growing. There
is a need for monitoring of health issues. Wireless Body Area Network (WBAN)
consists of wireless sensors attached on or inside human body for monitoring
vital health related problems e.g, Electro Cardiogram (ECG), Electro
Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening
situations, timely sending of data is essential. For data to reach health care
center, there must be a proper way of sending data through reliable connection
and with minimum delay. In this paper transmission delay of different paths,
through which data is sent from sensor to health care center over heterogeneous
multi-hop wireless channel is analyzed. Data of medical related diseases is
sent through three different paths. In all three paths, data from sensors first
reaches ZigBee, which is the common link in all three paths. Wireless Local
Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX),
Universal Mobile Telecommunication System (UMTS) are connected with ZigBee.
Each network (WLAN, WiMAX, UMTS) is setup according to environmental
conditions, suitability of device and availability of structure for that
device. Data from these networks is sent to IP-Cloud, which is further
connected to health care center. Delay of data reaching each device is
calculated and represented graphically. Main aim of this paper is to calculate
delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
On using Multiple Quality Link Metrics with Destination Sequenced Distance Vector Protocol for Wireless Multi-Hop Networks
In this paper, we compare and analyze performance of five quality link
metrics forWireless Multi-hop Networks (WMhNs). The metrics are based on loss
probability measurements; ETX, ETT, InvETX, ML and MD, in a distance vector
routing protocol; DSDV. Among these selected metrics, we have implemented ML,
MD, InvETX and ETT in DSDV which are previously implemented with different
protocols; ML, MD, InvETX are implemented with OLSR, while ETT is implemented
in MR-LQSR. For our comparison, we have selected Throughput, Normalized Routing
Load (NRL) and End-to-End Delay (E2ED) as performance parameters. Finally, we
deduce that InvETX due to low computational burden and link asymmetry
measurement outperforms among all metrics
On Energy Efficiency and Delay Minimization in Reactive Protocols in Wireless Multi-hop Networks
In Wireless Multi-hop Networks (WMhNs), routing protocols with energy
efficient and delay reduction techniques are needed to fulfill users demands.
In this paper, we present Linear Programming models (LP_models) to assess and
enhance reactive routing protocols. To practically examine constraints of
respective LP_models over reactive protocols, we select AODV, DSR and DYMO. It
is deduced from analytical simulations of LP_models in MATLAB that quick route
repair reduces routing latency and optimizations of retransmission attempts
results efficient energy utilization. To provide quick repair, we enhance AODV
and DSR. To practically examine the efficiency of enhanced protocols in
different scenarios of WMhNs, we conduct simulations using NS- 2. From
simulation results, enhanced DSR and AODV achieve efficient output by
optimizing routing latencies and routing load in terms of retransmission
attempts
- …