2,473 research outputs found

    Analytic calculation of energies and wave functions of the quartic and pure quartic oscillators

    Full text link
    Ground state energies and wave functions of quartic and pure quartic oscillators are calculated by first casting the Schr\"{o}dinger equation into a nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is solved by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. Our explicit analytic results are then compared with exact numerical and also with WKB solutions and it is found that our ground state wave functions, using a range of small to large coupling constants, yield a precision of between 0.1 and 1 percent and are more accurate than WKB solutions by two to three orders of magnitude. In addition, our QLM wave functions are devoid of unphysical turning point singularities and thus allow one to make analytical estimates of how variation of the oscillator parameters affects physical systems that can be described by the quartic and pure quartic oscillators.Comment: 8 pages, 12 figures, 1 tabl

    Direct Signals for Large Extra Dimensions in the Production of Fermion Pairs at Linear Colliders

    Get PDF
    We analyze the potentiality of the new generation of e+ee^+e^- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e. e+effˉGe^+e^- \leftarrow f\bar{f}G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using full tree level contibutions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96(0.86) up to 4.1(3.3) TeV at 2(5)σ\sigma level, depending on the number of extra dimensions.Comment: 19 pages, 5 figures. Using RevTex, axodraw.sty. Discussion was extended. No changes in the results. Accepted for publication by Phys. Rev.

    Supersymmetry Relations Between Contributions To One-Loop Gauge Boson Amplitudes

    Full text link
    We apply ideas motivated by string theory to improve the calculational efficiency of one-loop weak interaction processes with massive external gauge bosons. In certain cases ``supersymmetry'' relations between diagrams with a fermion loop and with a gauge boson loop hold. This is explicitly illustrated for a particular one-loop standard model process with four-external gauge bosons. The supersymmetry relations can be used to provide further significant improvements in calculational efficiency.Comment: 21 pages of plain TeX + 5 PostScript figures (compressed and uuencoded), UCLA/93/TEP/36 and DTP/93/8

    Brane fluctuations and suppression of Kaluza-Klein mode couplings

    Full text link
    In higher dimensional models where the gauge and gravity fields live in the bulk and the matter fields only in a brane, we point out the importance of the brane (transverse) coordinate modes, which are the Nambu-Goldstone bosons appearing as a result of spontaneous breaking of the translation symmetry. The brane recoil effect suppresses the couplings of higher Kaluza-Klein modes to the matter, and gives a natural resolution to the divergence problem caused by the exchange of infinitely many Kaluza-Klein modes.Comment: 11 pages, 1 eps figure, references adde

    Masses and Mixings in a Grand Unified Toy Model

    Full text link
    The generation of the fermion mass hierarchy in the standard model of particle physics is a long-standing puzzle. The recent discoveries from neutrino physics suggests that the mixing in the lepton sector is large compared to the quark mixings. To understand this asymmetry between the quark and lepton mixings is an important aim for particle physics. In this regard, two promising approaches from the theoretical side are grand unified theories and family symmetries. In this note we try to understand certain general features of grand unified theories with Abelian family symmetries by taking the simplest SU(5) grand unified theory as a prototype. We construct an SU(5) toy model with U(1)FZ2Z2Z2U(1)_F \otimes Z'_2\otimes Z''_2 \otimes Z'''_2 family symmetry that, in a natural way, duplicates the observed mass hierarchy and mixing matrices to lowest approximation. The system for generating the mass hierarchy is through a Froggatt-Nielsen type mechanism. One idea that we use in the model is that the quark and charged lepton sectors are hierarchical with small mixing angles while the light neutrino sector is democratic with larger mixing angles. We also discuss some of the difficulties in incorporating finer details into the model without making further assumptions or adding a large scalar sector.Comment: 21 pages, 2 figures, RevTeX, v2: references updated and typos corrected, v3: updated top quark mass, comments on MiniBooNE result, and typos correcte

    Neutrino induced reactions related to the ν\nu-process nucleosynthesis of 92{}^{92}Nb and 98{}^{98}Tc

    Full text link
    It has recently been proposed that 4192{}^{92}_{41}Nb and 4398{}^{98}_{43}Tc may have been formed in the ν\nu-process. We investigate the neutrino induced reactions related to the ν\nu-process origin of the two odd-odd nuclei. The main neutrino reactions for 4192{}^{92}_{41}Nb are the charged-current (CC) 92^{92}Zr(νe,e\nu_e,e^{-})92^{92}Nb and the neutral-current (NC) 93^{93}Nb(ν(νˉ),ν(νˉ){\nu} ({\bar \nu}), {\nu}^{'} ({\bar \nu})^{'} n)92^{92}Nb reactions. The main reactions for 4398{}^{98}_{43}Tc, are the CC reaction 98^{98}Mo(νe,e\nu_e,e^-)98^{98}Tc and the NC reaction 99^{99}Ru(ν(νˉ),ν(νˉ){\nu} ({\bar \nu}), {\nu}^{'} ({\bar \nu})^{'} p)98^{98}Tc. Our calculations are carried out using the quasi-particle random phase approximation. Numerical results are presented for the energy and temperature dependent cross sections. Since charge exchange reactions by neutrons may also lead to the formation of 4192{}^{92}_{41}Nb and 4398{}^{98}_{43}Tc, we discuss the feasibility of the 92^{92}Mo(n,p)92^{92}Nb and 98^{98}Ru(n,p)98^{98}Tc reactions to produce these nuclei.Comment: 21 pages, 8 figure

    Multiloop String-Like Formulas for QED

    Full text link
    Multiloop gauge-theory amplitudes written in the Feynman-parameter representation are poised to take advantage of two important developments of the last decade: the spinor-helicity technique and the superstring reorganization. The former has been considered in a previous article; the latter will be elaborated in this paper. We show here how to write multiloop string-like formulas in the Feynman-parameter representation for any process in QED, including those involving other non-electromagnetic interactions. The general connection between the Feynman-parameter approach and the superstring/first-quantized approach is discussed. In the special case of a one-loop multi-photon amplitude, these formulas reduce to the ones obtained by the superstring and the first quantized methods. The string-like formulas exhibits a simple gauge structure which makes the Ward-Takahashi identity apparent, and enables the integration-by-parts technique of Bern and Kosower to be applied, so that gauge-invariant parts can be extracted diagram-by-diagram with the seagull vertex neglected.Comment: 25 pages in Plain Tex, plus four figures in a postscript file; McGill/92-5

    On the Integrability, B\"Acklund Transformation and Symmetry Aspects of a Generalized Fisher Type Nonlinear Reaction-Diffusion Equation

    Get PDF
    The dynamics of nonlinear reaction-diffusion systems is dominated by the onset of patterns and Fisher equation is considered to be a prototype of such diffusive equations. Here we investigate the integrability properties of a generalized Fisher equation in both (1+1) and (2+1) dimensions. A Painlev\'e singularity structure analysis singles out a special case (m=2m=2) as integrable. More interestingly, a B\"acklund transformation is shown to give rise to a linearizing transformation for the integrable case. A Lie symmetry analysis again separates out the same m=2m=2 case as the integrable one and hence we report several physically interesting solutions via similarity reductions. Thus we give a group theoretical interpretation for the system under study. Explicit and numerical solutions for specific cases of nonintegrable systems are also given. In particular, the system is found to exhibit different types of travelling wave solutions and patterns, static structures and localized structures. Besides the Lie symmetry analysis, nonclassical and generalized conditional symmetry analysis are also carried out.Comment: 30 pages, 10 figures, to appear in Int. J. Bifur. Chaos (2004

    Gravitational waves from spinning eccentric binaries

    Full text link
    This paper is to introduce a new software called CBwaves which provides a fast and accurate computational tool to determine the gravitational waveforms yielded by generic spinning binaries of neutron stars and/or black holes on eccentric orbits. This is done within the post-Newtonian (PN) framework by integrating the equations of motion and the spin precession equations while the radiation field is determined by a simultaneous evaluation of the analytic waveforms. In applying CBwaves various physically interesting scenarios have been investigated. In particular, we have studied the appropriateness of the adiabatic approximation, and justified that the energy balance relation is indeed insensitive to the specific form of the applied radiation reaction term. By studying eccentric binary systems it is demonstrated that circular template banks are very ineffective in identifying binaries even if they possess tiny residual orbital eccentricity. In addition, by investigating the validity of the energy balance relation we show that, on contrary to the general expectations, the post-Newtonian approximation should not be applied once the post-Newtonian parameter gets beyond the critical value 0.080.1\sim 0.08-0.1. Finally, by studying the early phase of the gravitational waves emitted by strongly eccentric binary systems---which could be formed e.g. in various many-body interactions in the galactic halo---we have found that they possess very specific characteristics which may be used to identify these type of binary systems.Comment: 37 pages, 18 figures, submitted to Class. Quantum Gra

    Birthing practices of traditional birth attendants in South Asia in the context of training programmes

    Get PDF
    Traditional Birth Attendants (TBA) training has been an important component of public health policy interventions to improve maternal and child health in developing countries since the 1970s. More recently, since the 1990s, the TBA training strategy has been increasingly seen as irrelevant, ineffective or, on the whole, a failure due to evidence that the maternal mortality rate (MMR) in developing countries had not reduced. Although, worldwide data show that, by choice or out of necessity, 47 percent of births in the developing world are assisted by TBAs and/or family members, funding for TBA training has been reduced and moved to providing skilled birth attendants for all births. Any shift in policy needs to be supported by appropriate evidence on TBA roles in providing maternal and infant health care service and effectiveness of the training programmes. This article reviews literature on the characteristics and role of TBAs in South Asia with an emphasis on India. The aim was to assess the contribution of TBAs in providing maternal and infant health care service at different stages of pregnancy and after-delivery and birthing practices adopted in home births. The review of role revealed that apart from TBAs, there are various other people in the community also involved in making decisions about the welfare and health of the birthing mother and new born baby. However, TBAs have changing, localised but nonetheless significant roles in delivery, postnatal and infant care in India. Certain traditional birthing practices such as bathing babies immediately after birth, not weighing babies after birth and not feeding with colostrum are adopted in home births as well as health institutions in India. There is therefore a thin precarious balance between the application of biomedical and traditional knowledge. Customary rituals and perceptions essentially affect practices in home and institutional births and hence training of TBAs need to be implemented in conjunction with community awareness programmes
    corecore