12,748 research outputs found
Recommended from our members
Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries. The polycrystalline structure and nanodomain nature of the copolymer are revealed through high-resolution transmission electron microscopy (HRTEM). PIP polymer is also used as binders for the electrode to further capture the dissovlved polysulfides. A high areal capacity of ca. 7.0 mAh/cm2 and stable cycling are achieved based on the PIPS nanosulfur composite with a PIP binder, crucial to commercialization of lithium sulfur batteries. The chemical confinement both at material and electrode level alleviates the diffusion of polysulfides and the shuttle effect. The sulfur electrodes, both fresh and cycled, are analyzed through scanning electron microscopy (SEM). This approach enables scalable material production and high sulfur utilization at the cell level
IoT Device Identification Using Deep Learning
The growing use of IoT devices in organizations has increased the number of
attack vectors available to attackers due to the less secure nature of the
devices. The widely adopted bring your own device (BYOD) policy which allows an
employee to bring any IoT device into the workplace and attach it to an
organization's network also increases the risk of attacks. In order to address
this threat, organizations often implement security policies in which only the
connection of white-listed IoT devices is permitted. To monitor adherence to
such policies and protect their networks, organizations must be able to
identify the IoT devices connected to their networks and, more specifically, to
identify connected IoT devices that are not on the white-list (unknown
devices). In this study, we applied deep learning on network traffic to
automatically identify IoT devices connected to the network. In contrast to
previous work, our approach does not require that complex feature engineering
be applied on the network traffic, since we represent the communication
behavior of IoT devices using small images built from the IoT devices network
traffic payloads. In our experiments, we trained a multiclass classifier on a
publicly available dataset, successfully identifying 10 different IoT devices
and the traffic of smartphones and computers, with over 99% accuracy. We also
trained multiclass classifiers to detect unauthorized IoT devices connected to
the network, achieving over 99% overall average detection accuracy
Dynamic Behaviour of Floors with Cold-formed Steel Joists
Presented in this paper are the results of a recent study carried out at the University of Waterloo on the performance of residential floors supported by cold-formed steel C-section floor joists. Both static and dynamic tests were conducted on steel floors with different span lengths based on different design criteria. The purpose of the static tests was to evaluate the stiffuess and load sharing among the joists, and the purpose of the dynamic tests was to evaluate the dynamic characteristics such as frequencies of the floor systems. To identify the critical parameters that contribute to the control of floor vibration, tests were also carried out on floors without attached ceiling materials, with different bridging and blocking patterns, and with different support conditions. Test results are presented in comparison with the analytical results obtained from different design models
Attraction and consumption of methyl eugenol by male Bactrocera umbrosa Fabricius (Diptera: Tephritidae) promotes conspecific sexual communication and mating performance
The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies’ attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species
Revealing common artifacts due to ferromagnetic inclusions in highly-oriented pyrolytic graphite
We report on an extensive investigation to figure out the origin of
room-temperature ferromagnetism that is commonly observed by SQUID magnetometry
in highly-oriented pyrolytic graphite (HOPG). Electron backscattering and X-ray
microanalysis revealed the presence of micron-size magnetic clusters
(predominantly Fe) that are rare and would be difficult to detect without
careful search in a scanning electron microscope in the backscattering mode.
The clusters pin to crystal boundaries and their quantities match the amplitude
of typical ferromagnetic signals. No ferromagnetic response is detected in
samples where we could not find such magnetic inclusions. Our experiments show
that the frequently reported ferromagnetism in pristine HOPG is most likely to
originate from contamination with Fe-rich inclusions introduced presumably
during crystal growth.Comment: 8 pages, 7 figure
- …