13 research outputs found
Wolbachia Infection Decreased the Resistance of Drosophila to Lead
Background: The heavy metal lead has been shown to be associated with a genotoxic risk. Drosophila melanogaster is a model organism commonly utilized in genetic toxicology testing. The endosymbionts — Wolbachia are now very common in both wild populations and laboratory stocks of Drosophila. Wolbachia may induce resistance to pathogenic viruses, filarial nematodes and Plasmodium in fruit fly and mosquito hosts. However the effect of Wolbachia infection on the resistance of their hosts to heavy metal is unknown. Methodology/Principal Findings: Manipulating the lead content in the diet of Drosophila melanogaster, we found that lead consumption had no different effects on developmental time between Wolbachia-infected (Dmel wMel) and –uninfected (Dmel T) flies. While in Pb-contaminated medium, significantly reduced amount of pupae and adults of Dmel wMel were emerged, and Dmel wMel adults had significantly shorter longevity than that of Dmel T flies. Lead infusion in diet resulted in significantly decreased superoxide dismutase (SOD) activity in Dmel T flies (P,0.05), but not in Dmel wMel flies. Correspondingly, lead cultures induced a 10.8 fold increase in malonaldehyde (MDA) contents in Dmel T larvae (P,0.05). While in Dmel wMel larvae, it resulted in only a 1.3 fold increase. By quantitative RT-PCR, we showed that lead infused medium caused significantly increased expression level of relish and CecA2 genes in Dmel T flies (P,0.01). Lead cultures did not change dramatically the expression of these genes in Dmel wMel flies
Biology of Francisella tularensis Subspecies holarctica Live Vaccine Strain in the Tick Vector Dermacentor variabilis
Background: The c-proteobacterium Francisella tularensis is the etiologic agent of seasonal tick-transmitted tularemia epizootics in rodents and rabbits and of incidental infections in humans. The biology of F. tularensis in its tick vectors has not been fully described, particularly with respect to its quanta and duration of colonization, tissue dissemination, and transovarial transmission. A systematic study of the colonization of Dermacentor variabilis by the F. tularensis subsp. holarctica live vaccine strain (LVS) was undertaken to better understand whether D. variabilis may serve as an inter-epizootic reservoir for F. tularensis. Methodology/Principal Findings: Colony-reared larva, nymph, and adult D. variabilis were artificially fed LVS via glass capillary tubes fitted over the tick mouthparts, and the level of colonization determined by microbial culture. Larvae and nymphs were initially colonized with 8.860.8610 1 and 1.160.03610 3 CFU/tick, respectively. Post-molting, a significant increase in colonization of both molted nymphs and adults occurred, and LVS persisted in 42 % of molted adult ticks at 126 days post-capillary tube feeding. In adult ticks, LVS initially colonized the gut, disseminated to hemolymph and salivary glands by 21 days, and persisted up to 165 days. LVS was detected in the salivary secretions of adult ticks after four days post intra-hemocoelic inoculation, and LVS recovered from salivary gland was infectious to mice with an infectious dose 50 % of 3 CFU. LVS in gravid female ticks colonized via the intra-hemocoelic route disseminated to the ovaries and then t
Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.
Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0Â ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100Â ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2Â =Â 0.793, 0.807 and 0.739) and leaves (R 2Â =Â 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2Â =Â 0.668, 0.694 and 0.673) and leaves (R 2Â =Â 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline
CD200R deletion promotes a neutrophil niche for Francisella tularensis and increases infectious burden and mortality
The authors show that the CD200 receptor (CD200R) promotes effective clearance of pulmonary Francisella tularensis infection in knock out mice. This result is unexpected as CD200R is known to dampen pulmonary immune responses, and these data suggest that the beneficial effect against F. tularensis is due to depletion of a neutrophil niche for the bacterium