2,002 research outputs found
Two-electron photoionization of endohedral atoms
Using as an example, we demonstrate that static potential of the
fullerene core essentially alters the cross section of the two-electron
ionization differential in one-electron energy . We found that at high photon energy prominent oscillations
appear in it due to reflection of the second, slow electron wave on the shell, which "dies out" at relatively high values, of about
23 two-electron ionization potentials. The results were presented for
ratios , where is the two-electron differential
photoionization cross section. We have calculated the ratio , that accounts for
reflection of both photoelectrons by the shell. We have calculated
also the value of two-electron photoionization cross section and found that this value is close to that of an isolated
atom.Comment: 13 pages, 4 figure
Quantum simulation of artificial Abelian gauge field using nitrogen-vacancy center ensembles coupled to superconducting resonators
We propose a potentially practical scheme to simulate artificial Abelian
gauge field for polaritons using a hybrid quantum system consisting of
nitrogen-vacancy center ensembles (NVEs) and superconducting transmission line
resonators (TLR). In our case, the collective excitations of NVEs play the role
of bosonic particles, and our multiport device tends to circulate polaritons in
a behavior like a charged particle in an external magnetic field. We discuss
the possibility of identifying signatures of the Hofstadter "butterfly" in the
optical spectra of the resonators, and analyze the ground state crossover for
different gauge fields. Our work opens new perspectives in quantum simulation
of condensed matter and many-body physics using hybrid spin-ensemble circuit
quantum electrodynamics system. The experimental feasibility and challenge are
justified using currently available technology.Comment: 6 papes+supplementary materia
Weighted coverage based reviewer assignment
Peer reviewing is a standard process for assessing the quality of submissions at academic conferences and journals. A very important task in this process is the assignment of reviewers to papers. However, achieving an appropriate assignment is not easy, because all reviewers should have similar load and the subjects of the assigned papers should be consistent with the reviewers' expertise. In this paper, we propose a generalized framework for fair reviewer assignment. We first extract the domain knowledge from the reviewers' published papers and model this knowledge as a set of topics. Then, we perform a group assignment of reviewers to papers, which is a generalization of the classic Reviewer Assignment Problem (RAP), considering the relevance of the papers to topics as weights. We study a special case of the problem, where reviewers are to be found for just one paper (Journal Assignment Problem) and propose an exact algorithm which is fast in practice, as opposed to brute-force solutions. For the general case of having to assign multiple papers, which is too hard to be solved exactly, we propose a greedy algorithm that achieves a 1/2-approximation ratio compared to the exact solution. This is a great improvement compared to the 1/3-approximation solution proposed in previous work for the simpler coverage-based reviewer assignment problem, where there are no weights on topics. We theoretically prove the approximation bound of our solution and experimentally show that it is superior to the current state-of-the-art.postprin
Discovering the core semantics of event from social media
© 2015 Elsevier B.V. As social media is opening up such as Twitter and Sina Weibo,1 large volumes of short texts are flooding on the Web. The ocean of short texts dilutes the limited core semantics of event in cyberspace by redundancy, noises and irrelevant content on the web, which make it difficult to discover the core semantics of event. The major challenges include how to efficiently learn the semantic association distribution by small-scale association relations and how to maximize the coverage of the semantic association distribution by the minimum number of redundancy-free short texts. To solve the above issues, we explore a Markov random field based method for discovering the core semantics of event. This method makes semantics collaborative computation for learning association relation distribution and makes information gradient computation for discovering k redundancy-free texts as the core semantics of event. We evaluate our method by comparing with two state-of-the-art methods on the TAC dataset and the microblog dataset. The results show our method outperforms other methods in extracting core semantics accurately and efficiently. The proposed method can be applied to short text automatic generation, event discovery and summarization for big data analysis
Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors
In view of the recent experimental facts in the iron-pnictides, we make a
proposal that the itinerant electrons and local moments are simultaneously
present in such multiband materials. We study a minimal model composed of
coupled itinerant electrons and local moments to illustrate how a consistent
explanation of the experimental measurements can be obtained in the leading
order approximation. In this mean-field approach, the spin-density-wave (SDW)
order and superconducting pairing of the itinerant electrons are not directly
driven by the Fermi surface nesting, but are mainly induced by their coupling
to the local moments. The presence of the local moments as independent degrees
of freedom naturally provides strong pairing strength for superconductivity and
also explains the normal-state linear-temperature magnetic susceptibility above
the SDW transition temperature. We show that this simple model is supported by
various anomalous magnetic properties and isotope effect which are in
quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio
Simulation of Guided Wave Propagating in Composite Laminates with a Fast Finite Element-Based Method
The genome of Bacillus tequilensis EA-CB0015 sheds light into its epiphytic lifestyle and potential as a biocontrol agent
Different Bacillus species have successfully been used as biopesticides against a broad range of plant pathogens. Among these, Bacillus tequilensis EA-CB0015 has shown to efficiently control Black sigatoka disease in banana plants, presumably by mechanisms of adaptation that involve modifying the phyllosphere environment. Here, we report the complete genome of strain EA-CB0015, its precise taxonomic identity, and determined key genetic features that may contribute to its effective biocontrol of plant pathogens. We found that B. tequilensis EA-CB0015 harbors a singular 4 Mb circular chromosome, with 3,951 protein-coding sequences. Multi-locus sequence analysis (MLSA) and average nucleotide identity (ANI) analysis classified strain EA-CB0015 as B. tequilensis. Encoded within its genome are biosynthetic gene clusters (BGCs) for surfactin, iturin, plipastatin, bacillibactin, bacilysin, subtilosin A, sporulation killing factor, and other natural products that may facilitate inter-microbial warfare. Genes for indole-acetic acid (IAA) synthesis, the use of diverse carbon sources, and a multicellular lifestyle involving motility, biofilm formation, quorum sensing, competence, and sporulation suggest EA-CB0015 is adept at colonizing plant surfaces. Defensive mechanisms to survive invading viral infections and preserve genome integrity include putative type I and type II restriction modification (RM) and toxin/antitoxin (TA) systems. The presence of bacteriophage sequences, genomic islands, transposable elements, virulence factors, and antibiotic resistance genes indicate prior occurrences of genetic exchange. Altogether, the genome of EA-CB0015 supports its function as a biocontrol agent against phytopathogens and suggest it has adapted to thrive within phyllosphere environments
- …