301 research outputs found
Gauged Q ball in a piecewise parabolic potential
Q ball solutions are considered within the theory of a complex scalar field
with a gauged
U(1) symmetry and a parabolic-type potential. In the thin-walled limit, we
show explicitly that there is a maximum size for these objects because of the
repulsive Coulomb force. The size of Q ball will increase with the decrease of
local minimum of the potential. And when the two minima degenerate, the energy
stored within the surface of the Q ball becomes significant.
Furthermore, we find an analytic expression for gauged Q ball, which is
beyond the conventional thin-walled limit.Comment: 1 figure
Cosmological dynamics of scalar fields with O(N) symmetry
In this paper, we study the cosmological dynamics of scalar fields with O(N)
symmetry in general potentials. We compare the phase space of the dynamical
systems of the quintessence and phantom and give the conditions for the
existence of various attractors as well as their cosmological implications. We
also show that the existence of tracking attractor in O(N) phantom models
require the potential with , which makes the models with
exponential potential possess no tracking attractor.Comment: 9 pages, 4 figures; Replaced with the version to be published in
Classical and Quantum Gravity. Reference adde
Features of Motion Around Global Monopole in Asymptotically dS/AdS Spacetime
In this paper, we study the motion of test particle and light around the
Global Monopole in asymptotically dS/AdS spacetime. The motion of a test
particle and light in the exterior region of the global monopole in dS/AdS
spacetime has been investigated. Although the test particle's motion is quite
different from the case in asymptotically flat spacetime, the behaviors of
light(null geodesic) remain unchanged except a energy(frequency) shift. Through
a phase-plane analysis, we prove analytically that the existence of a periodic
solution to the equation of motion for a test particle will not be altered by
the presence of cosmological constant and the deficit angle, whose presence
only affects the position and type of the critical point on the phase plane. We
also show that the apparent capture section of the global monopole in dS/AdS
spacetime is quite different from that in flat spacetime.Comment: 15 pages, 4 PS figures, accepted for publication in Class. Quantum
Gra
Pairing symmetry and properties of iron-based high temperature superconductors
Pairing symmetry is important to indentify the pairing mechanism. The
analysis becomes particularly timely and important for the newly discovered
iron-based multi-orbital superconductors. From group theory point of view we
classified all pairing matrices (in the orbital space) that carry irreducible
representations of the system. The quasiparticle gap falls into three
categories: full, nodal and gapless. The nodal-gap states show conventional
Volovik effect even for on-site pairing. The gapless states are odd in orbital
space, have a negative superfluid density and are therefore unstable. In
connection to experiments we proposed possible pairing states and implications
for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
Quantum teleportation and entanglement distribution over 100-kilometre free-space channels
A long standing goal for quantum communication is to transfer a quantum state
over arbitrary distances. Free-space quantum communication provides a promising
solution towards this challenging goal. Here, through a 97-km free space
channel, we demonstrate long distance quantum teleportation over a 35-53 dB
loss one-link channel, and entanglement distribution over a 66-85 dB high-loss
two-link channel. We achieve an average fidelity of {80.4(9)}% for teleporting
six distinct initial states and observe the violation of the
Clauser-Horne-Shimony-Holt inequality after distributing entanglement. Besides
being of fundamental interest, our result represents a significant step towards
a global quantum network. Moreover, the high-frequency and high-accuracy
acquiring, pointing and tracking technique developed in our experiment provides
an essential tool for future satellite-based quantum communication.Comment: 9 pages, 8 figure
Phantom with Born-Infield type Lagrangian
Recent analysis of the observation data indicates that the equation of state
of the dark energy might be smaller than -1, which leads to the introduction of
phantom models featured by its negative kinetic energy to account for the
regime of equation of state . In this paper, we generalize the idea to
the Born-Infield type Lagrangian with negative kinetic energy term and give the
condition for the potential, under which the late time attractor solution
exists and also analyze a viable cosmological model in such a scheme.Comment: 13 pages, 6 figures, Reference updated, the final version will be
published in Phys. Rev.
Generation of fusion protein EGFRvIII-HBcAg and its anti-tumor effect in vivo
The epidermal growth factor receptor variant III (EGFRvIII) is the most common variation of EGFR. Because it shows a high frequency in several different types of tumor and has not been detected in normal tissues, it is an ideal target for tumor specific therapy. In this study, we prepared EGFRvIII-HBcAg fusion protein. After immunization with fusion protein, HBcAg or PBS, the titers of antibody in BALB/c mice immunized with fusion protein reached 2.75 × 105. Western blot analysis demonstrated that the fusion protein had specific antigenicity against anti-EGFRvIII antibody. Further observation showed fusion protein induced a high frequency of IFN-γ-secreting lymphocytes. CD4+T cells rather than CD8+T cells were associated with the production of IFN-γ. Using Renca-vIII(+) cell as specific stimulator, we observed remarkable cytotoxic activity in splenocytes from mice immunized with fusion protein. Mice were challenged with Renca-vIII(+) cells after five times immunization. In fusion protein group, three of ten mice failed to develop tumor and all survived at the end of the research. The weight of tumors in fusion protein were obviously lighter than that in other two groups (t = 4.73, P = 0.044;t = 6.89, P = 0.040). These findings demonstrated that EGFRvIII-HBcAg fusion protein triggered protective responses against tumor expressing EGFRvIII
Common Features in Electronic Structure of the Fe-Based Layered Superconductors from Photoemission Spectroscopy
High resolution photoemission measurements have been carried out on
non-superconducting LaOFeAs parent compound and various superconducting
R(O1-xFx)FeAs (R=La, Ce and Pr) compounds. We found that the parent LaOFeAs
compound shows a metallic character. Through extensive measurements, we have
identified several common features in the electronic structure of these
Fe-based compounds: (1). 0.2 eV feature in the valence band; (2). A universal
13~16 meV feature; (3). A clear Fermi cutoff showing zero leading-edge shift in
the superconducting state;(4). Lack of superconducting coherence peak(s); (5).
Near EF spectral weight suppression with decreasing temperature. These
universal features can provide important information about band structure,
superconducting gap and pseudogap in these Fe-based materials.Comment: 5 pages,4 figure
Residual hepatocellular carcinoma after oxaliplatin treatment has increased metastatic potential in a nude mouse model and is attenuated by Songyou Yin
<p>Abstract</p> <p>Background</p> <p>The opposite effects of chemotherapy, which enhance the malignancy of treated cancers such as hepatocellular carcinoma (HCC), are not well understood. We investigated this phenomenon and corresponding mechanisms to develop a novel approach for improving chemotherapy efficacy in HCC.</p> <p>Methods</p> <p>Human hepatocellular carcinoma cell lines HepG2 (with low metastatic potential) and MHCC97L (with moderate metastatic potential) were used for the in vitro study. An orthotopic nude mouse model of human HCC was developed using MHCC97L cells. We then assessed the metastatic potential of surviving tumor cells after in vitro and in vivo oxaliplatin treatment. The molecular changes in surviving tumor cells were evaluated by western blot, immunofluorescence, and immunohistochemistry. The Chinese herbal extract Songyou Yin (composed of five herbs) was investigated in vivo to explore its effect on the metastatic potential of oxaliplatin-treated cancer cells.</p> <p>Results</p> <p>MHCC97L and HepG2 cells surviving oxaliplatin treatment showed enhanced migration and invasion in vitro. Residual HCC after in vivo oxaliplatin treatment demonstrated significantly increased metastasis to the lung (10/12 vs. 3/12) when re-inoculated into the livers of new recipient nude mice. Molecular changes consistent with epithelial-mesenchymal transition (EMT) were observed in oxaliplatin-treated tumor tissues and verified by in vitro experiments. The Chinese herbal extract Songyou Yin (4.2 and 8.4 g/kg) attenuated EMT and inhibited the enhanced metastatic potential of residual HCC in nude mice (6/15 vs. 13/15 and 3/15 vs. 13/15, respectively).</p> <p>Conclusions</p> <p>The surviving HCC after oxaliplatin treatment underwent EMT and demonstrated increased metastatic potential. Attenuation of EMT by Songyou Yin may improve the efficacy of chemotherapy in HCC.</p
- …