6 research outputs found
Distinctive Profile of IsomiR Expression and Novel MicroRNAs in Rat Heart Left Ventricle
MicroRNAs (miRNAs) are single-stranded non-coding RNAs that negatively regulate target gene expression through mRNA cleavage or translational repression. There is mounting evidence that they play critical roles in heart disease. The expression of known miRNAs in the heart has been studied at length by microarray and quantitative PCR but it is becoming evident that microRNA isoforms (isomiRs) are potentially physiologically important. It is well known that left ventricular (patho)physiology is influenced by transmural heterogeneity of cardiomyocyte phenotype, and this likely reflects underlying heterogeneity of gene expression. Given the significant role of miRNAs in regulating gene expression, knowledge of how the miRNA profile varies across the ventricular wall will be crucial to better understand the mechanisms governing transmural physiological heterogeneity. To determinine miRNA/isomiR expression profiles in the rat heart we investigated tissue from different locations across the left ventricular wall using deep sequencing. We detected significant quantities of 145 known rat miRNAs and 68 potential novel orthologs of known miRNAs, in mature, mature* and isomiR formation. Many isomiRs were detected at a higher frequency than their canonical sequence in miRBase and have different predicted targets. The most common miR-133a isomiR was more effective at targeting a construct containing a sequence from the gelsolin gene than was canonical miR-133a, as determined by dual-fluorescence assay. We identified a novel rat miR-1 homolog from a second miR-1 gene; and a novel rat miRNA similar to miR-676. We also cloned and sequenced the rat miR-486 gene which is not in miRBase (v18). Signalling pathways predicted to be targeted by the most highly detected miRNAs include Ubiquitin-mediated Proteolysis, Mitogen-Activated Protein Kinase, Regulation of Actin Cytoskeleton, Wnt signalling, Calcium Signalling, Gap junctions and Arrhythmogenic Right Ventricular Cardiomyopathy. Most miRNAs are not expressed in a gradient across the ventricular wall, with exceptions including miR-10b, miR-21, miR-99b and miR-486
Endogenous Auxin Profile in the Christmas Rose (Helleborus niger L.) Flower and Fruit: Free and Amide Conjugated IAA
The reproductive development of the Christmas rose (Helleborus niger L.) is characterized by an uncommon feature in the world of flowering plants: after fertilization the white perianth becomes green, photosynthetically active and persists during fruit development. In the flowers in which fertilization was prevented by emasculation (unfertilized) or entire reproductive organs were removed (depistillated), the elongation of the peduncle was reduced by 20 to 30%, and vascular development, particularly lignin deposition in sclerenchyma was arrested. Chlorophyll accumulation in sepals and their photosynthetic efficacy was up to 80% lower in comparison to fertilized flowers. Endogenous auxins were investigated in floral and fruit tissues and their potential roles in these processes were discussed. Analytical data of free indole-3-acetic acid (IAA), indole-3-ethanol (IEt), and seven amino acid conjugates were afforded by LC-MS/MS in floral tissues of fertilized as well as unfertilized and depistillated flowers. Among amino acid conjugates novel ones with Val, Gly, and Phe, were identified and quantified in the anthers, and in the fruit during development. Reproductive organs before fertilization, followed by developing fruit at post-anthesis were the main source of auxin. Tissues of unfertilized and depistillated flowers accumulated significantly lower level of auxin. Upon depistillation, auxin content in the peduncle and sepal was decreased to 4% and 45%, respectively, in comparison to fruit-bearing flowers. This study suggests that auxin arising in developing fruit may participate, in part, in coordination of the Christmas rose peduncle elongation and its vascular development