5,977 research outputs found

    Optical I-band Linear Polarimetry of the Magnetar 4U 0142+61 with Subaru

    Full text link
    The magnetar 4U~0142+61 has been well studied at optical and infrared wavelengths and is known to have a complicated broad-band spectrum over the wavelength range. Here we report the result from our linear imaging polarimetry of the magnetar at optical II-band. From the polarimetric observation carried out with the 8.2-m Subaru telescope, we determine the degree of linear polarization P=1.0±P=1.0\pm3.4\%, or PP\leq5.6\% (90\% confidence level). Considering models suggested for optical emission from magnetars, we discuss the implications of our result. The upper limit measurement indicates that different from radio pulsars, magnetars probably would not have strongly polarized optical emission if the emission arises from their magnetosphere as suggested.Comment: 5 pages, 1 figure, accepted for publication on Ap

    Unconventional magnetic phase separation in γ\gamma-CoV2_2O6_6

    Get PDF
    We have explored the magnetism in the non-geometrically frustrated spin-chain system γ\gamma-CoV2_{2}O6_{6} which possesses a complex magnetic exchange network. Our neutron diffraction patterns at low temperatures (TT \leqslant TNT_{\mathrm{N}} = 6.6 K) are best described by a model in which two magnetic phases coexist in a volume ratio 65(1) : 35(1), with each phase consisting of a single spin modulation. This model fits previous studies and our observations better than the model proposed by Lenertz etet alal in J. Phys. Chem. C 118, 13981 (2014), which consisted of one phase with two spin modulations. By decreasing the temperature from TNT_{\mathrm{N}}, the minority phase of our model undergoes an incommensurate-commensurate lock-in transition at TT^{*} = 5.6 K. Based on these results, we propose that phase separation is an alternative approach for degeneracy-lifting in frustrated magnets

    Type 1 Diabetes and Hypoglycemia

    Get PDF

    Novel ordering of an S = 1/2 quasi one-dimensional Ising-like anitiferromagnet in magnetic field

    Full text link
    High-field specific heat measurements on BaCo2V2O8, which is a good realization of an S = 1/2 quasi one-dimensional Ising-like antifferomagnet, have been performed in magnetic fields up to 12 T along the chain and at temperature down to 200 mK. We have found a new magnetic ordered state in the field-induced phase above Hc ~ 3.9 T. We suggest that a novel type of the incommensurate order, which has no correspondence to the classical spin system, is realized in the field-induced phase.Comment: 4pages, 4figure

    ASCA Observations of the Supernova Remnant IC 443: Thermal Structure and Detection of Overionized Plasma

    Get PDF
    We present the results of X-ray spatial and spectral studies of the ``mixed-morphology'' supernova remnant IC 443 using ASCA. IC 443 has a center-filled image in X-ray band, contrasting with the shell-like appearance in radio and optical bands. The overall X-ray emission is thermal, not from a synchrotron nebula. ASCA observed IC 443 three times, covering the whole remnant. From the image analysis, we found that the softness-ratio map reveals a shell-like structure. At the same time, its spectra require two (1.0 keV and 0.2 keV) plasma components; the emission of the 0.2 keV plasma is stronger in the region near the shell than the center. These results can be explained by a simple model that IC 443 has a hot (1.0 keV) interior surrounded by a cool (0.2 keV) outer shell. From the emission measures, we infer that the 0.2 keV plasma is denser than the 1.0 keV plasma, suggesting pressure equilibrium between the two. In addition, we found that the ionization temperature of sulfur, obtained from H-like Kα\alpha to He-like Kα\alpha intensity ratio, is 1.5 keV, significantly higher than the gas temperature of 1.0 keV suggested from the continuum spectrum. The same can be concluded for silicon. Neither an additional, hotter plasma component nor a multi-temperature plasma successfully accounts for this ratio, and we conclude that the 1.0 keV plasma is overionized. This is the first time that overionized gas has been detected in a SNR. For the gas to become overionized in the absence of a photoionizing flux, it must cool faster than the ions recombine. Thermal conduction from the 1.0 keV plasma to the 0.2 keV one could cause the 1.0 keV plasma to become overionized, which is plausible within an old (3×104\times10^4 yr) SNR.Comment: 11 pages, 15 figures, 2 tables, accepted for publication in The Astrophysical Journa

    Exogenously added GPI-anchored tissue inhibitor of matrix metal loproteinase-1 (TIMP-1) displays enhanced and novel biological activities

    Get PDF
    The family of tissue inhibitors of metalloproteinases (TIMPs) exhibits diverse physiological/biological functions including the inhibition of active matrix metalloproteinases, regulation of proMMP activation, cell growth, and the modulation of angiogenesis. TIMP-1 is a secreted protein that can be detected on the cell surface through its interaction with surface proteins. The diverse biological functions of TIMP-1 are thought to lie, in part, in the kinetics of TIMP-1/MMP/surface protein interactions. Proteins anchored by glycoinositol phospholipids (GPIs), when purified and added to cells in vitro, are incorporated into their surface membranes. A GPI anchor was fused to TIMP-1 to generate a reagent that could be added directly to cell membranes and thus focus defined concentrations of TIMP-1 protein on any cell surface independent of protein-protein interaction. Unlike native TIMP-1, exogenously added GPI-anchored TIMP-1 protein effectively blocked release of MMP-2 and MMP-9 from osteosarcoma cells. TIMP-1-GP1 was a more effective modulator of migration and proliferation than TIMP-1. While control hTIMP-1 protein did not significantly affect migration of primary microvascular endothelial cells at the concentrations tested, the GPI-anchored TIMP-1 protein showed a pronounced suppression of endothelial cell migration in response to bFGF. In addition, TIMP-1-GPI was more effective at inducing microvascular endothelial proliferation. In contrast, fibroblast proliferation was suppressed by the agent. Reagents based on this method should assist in the dissection of the protease cascades and activities involved in TIMP biology. Membrane-fixed TIMP-1 may represent a more effective version of the protein for use in therapeutic expression

    Longitudinal SDW order in a quasi-1D Ising-like quantum antiferromagnet

    Full text link
    From neutron diffraction measurements on a quasi-1D Ising-like Co2+^{\rm 2+} spin compound BaCo2_{\rm 2}V2_{\rm 2}O8_{\rm 8}, we observed an appearance of a novel type of incommensurate ordering in magnetic fields. This ordering is essentially different from the N{\' e}el-type ordering, which is expected for the classical system, and is caused by quantum fluctuation inherent in the quantum spin chain. A Tomonaga-Luttinger liquid (TLL) nature characteristic of the gapless quantum 1D system is responsible for the realization of the incommensurate ordering.Comment: 4pages, 4figur
    corecore