33 research outputs found

    High efficiency single quantum well graded-index separate-confinement heterostructure lasers fabricated with MeV oxygen ion implantation

    Get PDF
    Single quantum well AlGaAs/GaAs graded-index separate-confinement heterostructure lasers have been fabricated using MeV oxygen ion implantation plus optimized subsequent thermal annealing. A high differential quantum efficiency of 85% has been obtained in a 360-”m-long and 10-”m-wide stripe geometry device. The results have also demonstrated that excellent electrical isolation (breakdown voltage of over 30 V) and low threshold currents (22 mA) can be obtained with MeV oxygen ion isolation. It is suggested that oxygen ion implantation induced selective carrier compensation and compositional disordering in the quantum well region as well as radiation-induced lattice disordering in AlxGa1–xAs/GaAs may be mostly responsible for the buried layer modification in this fabrication process

    Direct determination of Al content in molecular-beam epitaxially grown AlxGa1–xAs (0<=x<=1) by nuclear resonant reaction analysis and x-ray rocking curve techniques

    Get PDF
    The techniques of nuclear resonant reaction analysis (NRRA) using 27Al(p,gamma)28Si and x-ray rocking curve (XRC) based on double-crystal diffractometry have been utilized to determine directly the Al concentration and its depth distribution in molecular-beam epitaxially (MBE) grown AlxGa1–xAs/GaAs heterojunctions. Combination of these two methods has revealed a linear relationship between the Al mole fraction and the lattice strain. This can eliminate the need for assuming that Vegard's law holds and that extrapolated elastic coefficients are accurate. The result supports that both of these two techniques provide an accurate determination of the absolute Al content and crystalline quality in AlxGa1–xAs/GaAs throughout the entire composition range (0<=x<=1) as well as profiling the Al distribution. In addition, significant depth fluctuations in the Al mole fraction in some samples have been probed by the NRRA technique as well as by the XRC. The result suggests that a reliable and accurate measurement must be undertaken to ensure the control of the required Al distribution, which is necessary for the high performance of many devices

    Fabrication of GaAs/AlGaAs Quantum Well Lasers with MeV Oxygen Ion Implantation

    Get PDF
    MeV oxygen ion implantation in GaAs/ AlGaAs has been shown to provide a simple and very promising technique for quantum well laser fabrication. A 10ÎŒm stripe single quantum well (SQW) graded-index separation confinement heterostructure (GRINSCH) laser made in this way has achieved high performance with high quantum differential efficiency, low threshold current and good electrical isolation characteristics. MeV oxygen ion implantation with optimum thermal annealing produces a deep buried electrical isolation layer in n-type GaAs and reduces optical absorption in GaAs/AlGaAs quantum well structures. Ion implantation stimulated compositional disordering as well as implanted oxygen-related deep level traps may be considered as important effects for electrical and optical modification of interfaces in GaAs and AlGaAs

    Assessing the application of miscible CO2 flooding in oil reservoirs: a case study from Pakistan

    Get PDF
    Miscible carbon dioxide (CO2) flooding has been recognized as a promising approach to enhance the recovery of oil reservoirs. However, depending on the injection strategy and rock/fluid characteristics, efficiency of the miscible CO2flooding varies from reservoir to reservoir. Although, many studies have been carried out to evaluate the performance of the miscible CO2flooding, a specific strategy which can be strictly followed for a hydrocarbon reservoir has not been established yet. The aim of this study is to assess one of Pakistan’s oil reservoirs for miscible CO2flooding by applying a modified screening criterion and numerical modeling. As such, the most recent miscible CO2screening criteria were modified, and a numerical modeling was applied on the prospective reservoir. Based on the results obtained, South oil reservoir (S3) is chosen for a detailed assessment of miscible CO2flooding. It was also found that implementation of CO2water-alternating gas (CO2-WAG) injection at early stages of production can increase the production life of the reservoir

    Cursory seismic drift assessment for buildings in moderate seismicity regions

    No full text
    This paper outlines a methodology to assess the seismic drift of reinforced concrete buildings with limited structural and geotechnical information. Based on the latest and the most advanced research on predicting potential near-field and far field earthquakes affecting Hong Kong, the engineering response spectra for both rock and soil sites are derived. A new step-by-step procedure for displacement-based seismic hazard assessment of building structures is proposed to determine the maximum inter-storey drift demand for reinforced concrete buildings. The primary information required for this assessment is only the depth of the soft soil above bedrock and the height of the building. This procedure is further extended to assess the maximum chord rotation angle demand for the coupling beam of coupled shear wall or frame wall structures, which may be very critical when subjected to earthquake forces. An example is provided to illustrate calibration of the assessment procedure by using actual engineering structural models.link_to_subscribed_fulltex

    Developments in target micro-doppler signatures analysis: radar imaging, ultrasound and through-the-wall radar

    Get PDF
    Target motions, other than the main bulk translation of the target, induce Doppler modulations around the main Doppler shift that form what is commonly called a target micro-Doppler signature. Radar micro-Doppler signatures are generally both target and action speci c and hence can be used to classify and recognise targets as well as to identify possible threats. In recent years, research into the use of micro-Doppler signatures for target classi cation to address many defence and security challenges has been of increasing interest. In this paper, we present a review of the work published in the last 10 years on emerging applications of radar target analysis using micro-Doppler signatures. Speci cally we review micro-Doppler target signatures in bistatic SAR and ISAR, through-the-wall radar and ultrasound radar. This article has been compiled to provide radar practitioners with a unique reference source covering the latest developments in micro-Doppler analysis, extraction and mitigation techniques. The paper shows that this research area is highly active and fast moving and demonstrates that micro-Doppler techniques can provide important solutions to many radar target classification challenges
    corecore