31 research outputs found

    Radiation Chemistry of Overirradiated Aqueous Solutions of Hydrogen Cyanide and Ammonium Cyanide

    Get PDF
    The radiolysis of aqueous solutions (O2-free) of HCN and NH4CN was examined at very large doses of 60Co gamma radiation (up to 230 Mrad). In this dose range the cyanide initially present (0.12 M) is decomposed and only its radiolytic products participate in the radiation-induced chemical process. It has been found that the weight of the dry residue containing the mixture of nonvolatile radiolytic products increases as doses increase up to 40 Mrad (up to about 4 g/l), but with further dose increases remains practically unchanged (NH4CN) or decreases slightly (HCN). Carboxylic and amino acids are present in overirradiated samples. At increasing doses their concentrations decrease, with the exception of oxalic and malonic acids, which are continually produced and accumulate. This is also the case with the abundant NH3 and CO2, as well as with several other products that were generated at lower radiation-chemical yields. The molecular weights of the radiolytic products are up to 20,000 daltons throughout the dose range studied. Their amounts gradually change with increasing doses above 30 Mrad: The compounds with Mw between 2,000 and 6,000 daltons become more abundant, while the amounts of polymers with Mw between 6,000 and 20,000 decrease. The relevance of these findings for studies of chemical evolution is considered

    OrthofaƧade-Based Assisted Inspection Method for Buildings

    No full text
    Building faƧade assessment could be performed in a more efficient way using a multidisciplinary approach and modern technologies. This study proposes the orthofaƧade-based assisted inspection method (AIM), universal and applicable to different types of faƧade cladding and suitable for application in the condition assessment of inaccessible building faƧades or high-rise and large structures of all kinds. The AIM method offers a multidisciplinary approach by combining unmanned aerial vehicle (UAV) technology, electronic tachymetry, and digital image processing techniques (photogrammetry and open-source computer vision methods). The method was verified in a case study performed on a high-rise building faƧade. On-site data acquisition of high-resolution images of faƧade and control points was conducted by UAV and tachymetry. The data were further processed in photogrammetric software in order to generate a georeferenced orthofaƧade. Crack detection was performed at pixel level via computer code using the OpenCV library methods. The established diagnostic model, defined by control points, enables precise determination of crack location. Crack length, width, or area could be calculated based on the coordinates of its points, by performing simple mathematical operations. The AIM method provides automation of crack detection and precise determination of location and geometrical parameters of detected crack

    Orthofaçade-Based Assisted Inspection Method for Buildings

    No full text
    Building façade assessment could be performed in a more efficient way using a multidisciplinary approach and modern technologies. This study proposes the orthofaçade-based assisted inspection method (AIM), universal and applicable to different types of façade cladding and suitable for application in the condition assessment of inaccessible building façades or high-rise and large structures of all kinds. The AIM method offers a multidisciplinary approach by combining unmanned aerial vehicle (UAV) technology, electronic tachymetry, and digital image processing techniques (photogrammetry and open-source computer vision methods). The method was verified in a case study performed on a high-rise building façade. On-site data acquisition of high-resolution images of façade and control points was conducted by UAV and tachymetry. The data were further processed in photogrammetric software in order to generate a georeferenced orthofaçade. Crack detection was performed at pixel level via computer code using the OpenCV library methods. The established diagnostic model, defined by control points, enables precise determination of crack location. Crack length, width, or area could be calculated based on the coordinates of its points, by performing simple mathematical operations. The AIM method provides automation of crack detection and precise determination of location and geometrical parameters of detected crack
    corecore