33,479 research outputs found
Non-fragile H∞ control with randomly occurring gain variations, distributed delays and channel fadings
This study is concerned with the non-fragile H∞ control problem for a class of discrete-time systems subject to randomly occurring gain variations (ROGVs), channel fadings and infinite-distributed delays. A new stochastic phenomenon (ROGVs), which is governed by a sequence of random variables with a certain probabilistic distribution, is put forward to better reflect the reality of the randomly occurring fluctuation of controller gains implemented in networked environments. A modified stochastic Rice fading model is then exploited to account for both channel fadings and random time-delays in a unified representation. The channel coefficients are a set of mutually independent random variables which abide by any (not necessarily Gaussian) probability density function on [0, 1]. Attention is focused on the analysis and design of a non-fragile H∞ outputfeedback controller such that the closed-loop control system is stochastically stable with a prescribed H∞ performance. Through intensive stochastic analysis, sufficient conditions are established for the desired stochastic stability and H∞ disturbance attenuation, and the addressed non-fragile control problem is then recast as a convex optimisation problem solvable via the semidefinite programme method. An example is finally provided to demonstrate the effectiveness of the proposed design method
Recommended from our members
H∞ fault estimation with randomly occurring uncertainties, quantization effects and successive packet dropouts: The finite-horizon case
In this paper, the finite-horizon H∞ fault estimation problem is investigated for a class of uncertain nonlinear time-varying systems subject to multiple stochastic delays. The randomly occurring uncertainties (ROUs) enter into the system due to the random fluctuations of network conditions. The measured output is quantized by a logarithmic quantizer before being transmitted to the fault estimator. Also, successive packet dropouts (SPDs) happen when the quantized signals are transmitted through an unreliable network medium. Three mutually independent sets of Bernoulli-distributed white sequences are introduced to govern the multiple stochastic delays, ROUs and SPDs. By employing the stochastic analysis approach, some sufficient conditions are established for the desired finite-horizon fault estimator to achieve the specified H∞ performance. The time-varying parameters of the fault estimator are obtained by solving a set of recursive linear matrix inequalities. Finally, an illustrative numerical example is provided to show the effectiveness of the proposed fault estimation approach
On general systems with network-enhanced complexities
In recent years, the study of networked control systems (NCSs) has gradually become an active research area due to the advantages of using networked media in many aspects such as the ease of maintenance and installation, the large flexibility and the low cost. It is well known that the devices in networks are mutually connected via communication cables that are of limited capacity. Therefore, some network-induced phenomena have inevitably emerged in the areas of signal processing and control engineering. These phenomena include, but are not limited to, network-induced communication delays, missing data, signal quantization, saturations, and channel fading. It is of great importance to understand how these phenomena influence the closed-loop stability and performance properties
Event-Based H∞ filter design for a class of nonlinear time-varying systems with fading channels and multiplicative noises
In this paper, a general event-triggered framework is developed to deal with the finite-horizon H∞ filtering problem for discrete time-varying systems with fading channels, randomly occurring nonlinearities and multiplicative noises. An event indicator variable is constructed and the corresponding event-triggered scheme is proposed. Such a scheme is based on the relative error with respect to the measurement signal in order to determine whether the measurement output should be transmitted to the filter or not. The fading channels are described by modified stochastic Rice fading models. Some uncorrelated random variables are introduced, respectively, to govern the phenomena of state-multiplicative noises, randomly occurring nonlinearities as well as fading measurements. The purpose of the addressed problem is to design a set of time-varying filter such that the influence from the exogenous disturbances onto the filtering errors is attenuated at the given level quantified by a H∞ norm in the mean-square sense. By utilizing stochastic analysis techniques, sufficient conditions are established to ensure that the dynamic system under consideration satisfies the H∞ filtering performance constraint, and then a recursive linear matrix inequality (RLMI) approach is employed to design the desired filter gains. Simulation results demonstrate the effectiveness of the developed filter design scheme
Finite-horizon H∞ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements
This technical note deals with the H∞ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such that, in the presence of channel fading and randomly occurring nonlinearities, the H∞ performance is guaranteed over a given finite-horizon. The model transformation technique is first employed to simplify the addressed problem, and then the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon H∞ performance. Moreover, the time-varying controller parameters are characterized via solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the usefulness of the proposed controller design scheme
Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems
This paper is concerned with the finite-horizon estimation problem of randomly occurring faults for a class of nonlinear systems whose parameters are all time-varying. The faults are assumed to occur in a random way governed by two sets of Bernoulli distributed white sequences. The stochastic nonlinearities entering the system are described by statistical means that can cover several classes of well-studied nonlinearities. The aim of the problem is to estimate the random faults, over a finite horizon, such that the influence from the exogenous disturbances onto the estimation errors is attenuated at the given level quantified by an H∞-norm in the mean square sense. By using the completing squares method and stochastic analysis techniques, necessary and sufficient conditions are established for the existence of the desired finite-horizon H∞ fault estimator whose parameters are then obtained by solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the effectiveness of the proposed fault estimation method
- …