1,065 research outputs found

    Phenomenological Scaling of Rapidity Dependence for Anisotropic Flows in 25 MeV/nucleon Ca + Ca by Quantum Molecular Dynamics Model

    Full text link
    Anisotropic flows (v1v_1, v2v_2, v3v_3 and v4v_4) of light fragments up till the mass number 4 as a function of rapidity have been studied for 25 MeV/nucleon 40^{40}Ca + 40^{40}Ca at large impact parameters by Quantum Molecular Dynamics model. A phenomenological scaling behavior of rapidity dependent flow parameters vnv_n (n = 1, 2, 3 and 4) has been found as a function of mass number plus a constant term, which may arise from the interplay of collective and random motions. In addition, v4/v22v_4/{v_2}^2 keeps almost independent of rapidity and remains a rough constant of 1/2 for all light fragments.Comment: 4 pages, 5 figure

    Active actinometry on a cold hydrogen afterglow

    Get PDF
    Summary form only given. A new method of actinometry has developed to characterize the cold afterglow of an expanding thermal plasma source in hydrogen. A small electrode is placed in the afterglow to generate a local low-frequency (100-500 kHz) plasma. In this plasma fast electrons are created that can excite particles from the ground state to visible light emitting levels. The atomic Balmer alpha line and the molecular Fulcher band are used to determine the atomic and molecular abundances of the plasma. The power input from the low frequency discharge is kept low enough to assure that the plasma composition and the gas temperature are not significantly influenced. Active actinometry thus offers a method to sample the composition and the ground state molecular populations of the flowing afterglow plasma. The method has been successfully applied under plasma conditions with a low electron temperature (<0.2 eV) and a low electron density (<10/sup 17/ m/sup -3/

    Hydrogen kinetics in expanding high density plasmas

    Get PDF

    Parallel momentum distribution of the 28^{28}Si fragments from 29^{29}P

    Full text link
    Distribution of the parallel momentum of 28^{28}Si fragments from the breakup of 30.7 MeV/nucleon 29^{29}P has been measured on C targets. The distribution has the FWHM with the value of 110.5 ±\pm 23.5 MeV/c which is consistent quantitatively with Galuber model calculation assuming by a valence proton in 29^{29}P. The density distribution is also predicted by Skyrme-Hartree-Fock calculation. Results show that there might exist the proton-skin structure in 29^{29}P.Comment: 4 pages, 4 figure

    Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions

    Full text link
    Elliptic flow (v2v_2) and hexadecupole flow (v4v_4) of light clusters have been studied in details for 25 MeV/nucleon 86^{86}Kr + 124^{124}Sn at large impact parameters by Quantum Molecular Dynamics model with different potential parameters. Four parameter sets which include soft or hard equation of state (EOS) with/without symmetry energy term are used. Both number-of-nucleon (AA) scaling of the elliptic flow versus transverse momentum (ptp_t) and the scaling of v4/A2v_4/A^{2} versus (pt/A)2(p_t/A)^2 have been demonstrated for the light clusters in all above calculation conditions. It was also found that the ratio of v4/v22v_4/{v_2}^2 keeps a constant of 1/2 which is independent of ptp_t for all the light fragments. By comparisons among different combinations of EOS and symmetry potential term, the results show that the above scaling behaviors are solid which do not depend the details of potential, while the strength of flows is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure
    corecore