487 research outputs found

    On the universality of a class of annihilation-coagulation models

    Full text link
    A class of dd-dimensional reaction-diffusion models interpolating continuously between the diffusion-coagulation and the diffusion-annihilation models is introduced. Exact relations among the observables of different models are established. For the one-dimensional case, it is shown how correlations in the initial state can lead to non-universal amplitudes for time-dependent particles density.Comment: 18 pages with no figures. Latex file using REVTE

    Coherent State path-integral simulation of many particle systems

    Full text link
    The coherent state path integral formulation of certain many particle systems allows for their non perturbative study by the techniques of lattice field theory. In this paper we exploit this strategy by simulating the explicit example of the diffusion controlled reaction A+A0A+A\to 0. Our results are consistent with some renormalization group-based predictions thus clarifying the continuum limit of the action of the problem.Comment: 20 pages, 4 figures. Minor corrections. Acknowledgement and reference correcte

    Crossover from Rate-Equation to Diffusion-Controlled Kinetics in Two-Particle Coagulation

    Full text link
    We develop an analytical diffusion-equation-type approximation scheme for the one-dimensional coagulation reaction A+A->A with partial reaction probability on particle encounters which are otherwise hard-core. The new approximation describes the crossover from the mean-field rate-equation behavior at short times to the universal, fluctuation-dominated behavior at large times. The approximation becomes quantitatively accurate when the system is initially close to the continuum behavior, i.e., for small initial density and fast reaction. For large initial density and slow reaction, lattice effects are nonnegligible for an extended initial time interval. In such cases our approximation provides the correct description of the initial mean-field as well as the asymptotic large-time, fluctuation-dominated behavior. However, the intermediate-time crossover between the two regimes is described only semiquantitatively.Comment: 21 pages, plain Te

    A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0

    Full text link
    We introduce a method of intervals for the analysis of diffusion-limited annihilation, A+A -> 0, on the line. The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example, we treat the following cases: (a) annihilation in the infinite line and in infinite (discrete) chains; (b) annihilation with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance; (c) annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings, with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some other minor changes, to conform with final for

    Diffusion-Limited Aggregation Processes with 3-Particle Elementary Reactions

    Full text link
    A diffusion-limited aggregation process, in which clusters coalesce by means of 3-particle reaction, A+A+A->A, is investigated. In one dimension we give a heuristic argument that predicts logarithmic corrections to the mean-field asymptotic behavior for the concentration of clusters of mass mm at time tt, c(m,t) m1/2(log(t)/t)3/4c(m,t)~m^{-1/2}(log(t)/t)^{3/4}, for 1<<m<<t/log(t)1 << m << \sqrt{t/log(t)}. The total concentration of clusters, c(t)c(t), decays as c(t) log(t)/tc(t)~\sqrt{log(t)/t} at t>t --> \infty. We also investigate the problem with a localized steady source of monomers and find that the steady-state concentration c(r)c(r) scales as r1(log(r))1/2r^{-1}(log(r))^{1/2}, r1r^{-1}, and r1(log(r))1/2r^{-1}(log(r))^{-1/2}, respectively, for the spatial dimension dd equal to 1, 2, and 3. The total number of clusters, N(t)N(t), grows with time as (log(t))3/2(log(t))^{3/2}, t1/2t^{1/2}, and t(log(t))1/2t(log(t))^{-1/2} for dd = 1, 2, and 3. Furthermore, in three dimensions we obtain an asymptotic solution for the steady state cluster-mass distribution: c(m,r)r1(log(r))1Φ(z)c(m,r) \sim r^{-1}(log(r))^{-1}\Phi(z), with the scaling function Φ(z)=z1/2exp(z)\Phi(z)=z^{-1/2}\exp(-z) and the scaling variable z m/log(r)z ~ m/\sqrt{log(r)}.Comment: 12 pages, plain Te

    Stratified horizontal flow in vertically vibrated granular layers

    Full text link
    A layer of granular material on a vertically vibrating sawtooth-shaped base exhibits horizontal flow whose speed and direction depend on the parameters specifying the system in a complex manner. Discrete-particle simulations reveal that the induced flow rate varies with height within the granular layer and oppositely directed flows can occur at different levels. The behavior of the overall flow is readily understood once this novel feature is taken into account.Comment: 4 pages, 6 figures, submitte

    Multiparticle Reactions with Spatial Anisotropy

    Full text link
    We study the effect of anisotropic diffusion on the one-dimensional annihilation reaction kA->inert with partial reaction probabilities when hard-core particles meet in groups of k nearest neighbors. Based on scaling arguments, mean field approaches and random walk considerations we argue that the spatial anisotropy introduces no appreciable changes as compared to the isotropic case. Our conjectures are supported by numerical simulations for slow reaction rates, for k=2 and 4.Comment: nine pages, plain Te

    Alternating Kinetics of Annihilating Random Walks Near a Free Interface

    Full text link
    The kinetics of annihilating random walks in one dimension, with the half-line x>0 initially filled, is investigated. The survival probability of the nth particle from the interface exhibits power-law decay, S_n(t)~t^{-alpha_n}, with alpha_n approximately equal to 0.225 for n=1 and all odd values of n; for all n even, a faster decay with alpha_n approximately equal to 0.865 is observed. From consideration of the eventual survival probability in a finite cluster of particles, the rigorous bound alpha_1<1/4 is derived, while a heuristic argument gives alpha_1 approximately equal to 3 sqrt{3}/8 = 0.2067.... Numerically, this latter value appears to be a stringent lower bound for alpha_1. The average position of the first particle moves to the right approximately as 1.7 t^{1/2}, with a relatively sharp and asymmetric probability distribution.Comment: 6 pages, RevTeX, 5 eps figures include

    Universality in fully developed turbulence

    Get PDF
    We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70, 3251 (1993)] of highly turbulent flow with 1515 \le Taylor-Reynolds number Reλ200Re_\lambda\le 200 up to Reλ45000Re_\lambda \approx 45000, employing a reduced wave vector set method (introduced earlier) to approximately solve the Navier-Stokes equation. First, also for these extremely high Reynolds numbers ReλRe_\lambda, the energy spectra as well as the higher moments -- when scaled by the spectral intensity at the wave number kpk_p of peak dissipation -- can be described by {\it one universal} function of k/kpk/k_p for all ReλRe_\lambda. Second, the ISR scaling exponents ζm\zeta_m of this universal function are in agreement with the 1941 Kolmogorov theory (the better, the large ReλRe_\lambda is), as is the ReλRe_\lambda dependence of kpk_p. Only around kpk_p viscous damping leads to slight energy pileup in the spectra, as in the experimental data (bottleneck phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys. Rev.

    Finite-Size Scaling Studies of Reaction-Diffusion Systems Part III: Numerical Methods

    Full text link
    The scaling exponent and scaling function for the 1D single species coagulation model (A+AA)(A+A\rightarrow A) are shown to be universal, i.e. they are not influenced by the value of the coagulation rate. They are independent of the initial conditions as well. Two different numerical methods are used to compute the scaling properties: Monte Carlo simulations and extrapolations of exact finite lattice data. These methods are tested in a case where analytical results are available. It is shown that Monte Carlo simulations can be used to compute even the correction terms. To obtain reliable results from finite-size extrapolations exact numerical data for lattices up to ten sites are sufficient.Comment: 19 pages, LaTeX, 5 figures uuencoded, BONN HE-94-0
    corecore