1,921 research outputs found

    Robust high-temperature magnetic pinning induced by proximity in YBa2Cu3O7-8/La0.67Sr0.33MnO3 hybrids

    Get PDF
    An elaborately designed bilayer consisting of superconducting YBa2Cu3O7-6 (YBCO) and ferromagnetic La0.67Sr0.33MnO3-6 (LSMO) was prepared on a single crystal LaAlO3 substrate by pulsed laser deposition (PLD), with a view to understanding the mechanism behind the influence of superconductor/ferromagnet proximity on the critical current density, Jc. The present bilayer system shows significant modifications in Jc, as evidenced by the suppressed decay of its temperature dependence, as well as the crossing behavior of the magnetic field dependence of Jc at high temperatures. This indicates that enhanced flux pinning emerges at high temperatures, and it is believed to arise from the special magnetic inhomogeneity, i.e., the ferromagnet/antiferromagnet clusters caused by phase separation due to the epitaxial stress between LSMO and the substrate

    Super-acceleration on the Brane by Energy Flow from the Bulk

    Full text link
    We consider a brane cosmological model with energy exchange between brane and bulk. Parameterizing the energy exchange term by the scale factor and Hubble parameter, we are able to exactly solve the modified Friedmann equation on the brane. In this model, the equation of state for the effective dark energy has a transition behavior changing from wdeeff>1w_{de}^{eff}>-1 to wdeeff<1w_{de}^{eff}<-1, while the equation of state for the dark energy on the brane has w>1w>-1. Fitting data from type Ia supernova, Sloan Digital Sky Survey and Wilkinson Microwave Anisotropy Probe, our universe is predicted now in the state of super-acceleration with wde0eff=1.21w_{de0}^{eff}=-1.21.Comment: Revtex, 11 pages including 2 figures,v2: tpos fixed, references added, to appear in JCA

    Hessence: A New View of Quintom Dark Energy

    Full text link
    Recently a lot of attention has been drawn to build dark energy model in which the equation-of-state parameter ww can cross the phantom divide w=1w=-1. One of models to realize crossing the phantom divide is called quintom model, in which two real scalar fields appears, one is a normal scalar field and the other is a phantom-type scalar field. In this paper we propose a non-canonical complex scalar field as the dark energy, which we dub ``hessence'', to implement crossing the phantom divide, in a similar sense as the quintom dark energy model. In the hessence model, the dark energy is described by a single field with an internal degree of freedom rather than two independent real scalar fields. However, the hessence is different from an ordinary complex scalar field, we show that the hessence can avoid the difficulty of the Q-balls formation which gives trouble to the spintessence model (An ordinary complex scalar field acts as the dark energy). Furthermore, we find that, by choosing a proper potential, the hessence could correspond to a Chaplygin gas at late times.Comment: Latex2e, 12 pages, no figure; v2: discussions and references added, 14 pages, 3 eps figures; v3: published versio

    Measurement of the chi_{c2} Polarization in psi(2S) to gamma chi_{c2}

    Full text link
    The polarization of the chi_{c2} produced in psi(2S) decays into gamma chi_{c2} is measured using a sample of 14*10^6 psi(2S) events collected by BESII at the BEPC. A fit to the chi_{c2} production and decay angular distributions in psi(2S) to gamma chi_{c2}, chi_{c2} to pi pi and KK yields values x=A_1/A_0=2.08+/-0.44 and y=A_2/A_0=3.03 +/-0.66, with a correlation rho=0.92 between them, where A_{0,1,2} are the chi_{c2} helicity amplitudes. The measurement agrees with a pure E1 transition, and M2 and E3 contributions do not differ significantly from zero.Comment: 6 pages, 4 figures, 1 tabl

    Search for psi(3770)\ra\rho\pi at the BESII detector at the Beijing Electron-Positron Collider

    Full text link
    Non-DDˉD\bar{D} decay \psppto \rhopi is searched for using a data sample of (17.3±0.5)pb1(17.3\pm 0.5) pb^{-1} taken at the center-of-mass energy of 3.773 GeV by the BESII detector at the BEPC. No \rhopi signal is observed, and the upper limit of the cross section is measured to be \sigma(\EETO \rhopi)<6.0 pb at 90% C. L. Considering the interference between the continuum amplitude and the \pspp resonance amplitude, the branching fraction of \pspp decays to ρπ\rho\pi is determined to be \BR(\pspp\ra\rho\pi)\in(6.0\times10^{-6}, 2.4\times10^{-3}) at 90% C. L. This is in agreement with the prediction of the SS- and DD-wave mixing scheme of the charmonium states for solving the ``\rhopi puzzle'' between \jpsi and \psp decays.Comment: 15 pages, 5 figure

    Measurement of the cross section for e^+e^- -> ppbar at center-of-mass energies from 2.0 to 3.07 GeV

    Full text link
    Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.Comment: 6 pages, 3 figure

    Partial Wave Analysis of χc0π+πK+K\chi_{c0}\to\pi^+\pi^-K^+K^-

    Full text link
    A partial wave analysis of χc0π+πK+K\chi_{c0}\to\pi^+\pi^-K^+K^- in ψ(2S)γχc0\psi(2S)\to\gamma\chi_{c0} decay is presented using a sample of 14 million ψ(2S)\psi(2S) events accumulated by the BES II detector. The data are fitted to the sum of relativistic covariant tensor amplitudes for intermediate resonant decay modes. From the fit, significant contributions to χc0\chi_{c0} decays from the channels f0(980)f0(980)f_0(980)f_0(980), f0(980)f0(2200)f_0(980)f_0(2200), f0(1370)f0(1710)f_0(1370)f_0(1710), K(892)0Kˉ(892)0K^*(892)^0\bar K^*(892)^0, K0(1430)Kˉ0(1430)K^*_0(1430)\bar K^*_0(1430), K0(1430)Kˉ2(1430)+c.c.K^*_0(1430)\bar K^*_2(1430) + c.c., and K1(1270)KK_1(1270)K are found. Flavor-SU(3)-violating K1(1270)K1(1400)K_1(1270)-K_1(1400) asymmetry is observed. Values obtained for the masses and widths of the resonances f0(1710)f_0(1710), f0(2200)f_0(2200), f0(1370)f_0(1370), and K0(1430)K^*_0(1430) are presented.Comment: 16 pages, 9 figures, and 4 table

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Measurements of J/psi decays into phi pi^0, phi eta, and phi eta^prime

    Full text link
    Based on 5.8x10^7 J/psi events detected in BESII, the branching fractions of J/psi--> phi eta and phi eta^prime are measured for different eta and eta^prime decay modes. The results are significantly higher than previous measurements. An upper limit on B(J/psi--> phi pi^0) is also obtained.Comment: 9 pages, 10 figure
    corecore