13 research outputs found

    Well Placement Optimization with the Covariance Matrix Adaptation Evolution Strategy and Meta-Models

    Get PDF
    International audienceThe amount of hydrocarbon recovered can be considerably increased by finding optimal placement of non-conventional wells. For that purpose, the use of optimization algorithms, where the objective function is evaluated using a reservoir simulator, is needed. Furthermore, for complex reservoir geologies with high heterogeneities, the optimization problem requires algorithms able to cope with the non regularity of the objective function. In this paper, we propose an optimization methodology for determining optimal well locations and trajectories based on the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) which is recognized as one of the most powerful derivative-free optimizers for continuous optimization. In addition, to improve the optimization procedure two new techniques are proposed: (1) Adaptive penalization with rejection in order to handle well placement constraints; (2) Incorporation of a meta-model, based on locally weighted regression, into CMA-ES, using an approximate stochastic ranking procedure, in order to reduce the number of reservoir simulations required to evaluate the objective function. The approach is applied to the PUNQ-S3 case and compared with a Genetic Algorithm (GA) incorporating the Genocop III technique for handling constraints. To allow a fair comparison, both algorithms are used without parameter tuning on the problem, standard settings are used for the GA and default settings for CMA-ES. It is shown that our new approach outperforms the genetic algorithm: it leads in general to both a higher net present value and a significant reduction in the number of reservoir simulations needed to reach a good well configuration. Moreover, coupling CMA-ES with a metamodel leads to further improvement, which was around 20% for the synthetic case in this study

    Comparison-Based Optimizers Need Comparison-Based Surrogates

    Get PDF
    International audienceTaking inspiration from approximate ranking, this paper nvestigates the use of rank-based Support Vector Machine as surrogate model within CMA-ES, enforcing the invariance of the approach with respect to monotonous transformations of the fitness function. Whereas the choice of the SVM kernel is known to be a critical issue, the proposed approach uses the Covariance Matrix adapted by CMA-ES within a Gaussian kernel, ensuring the adaptation of the kernel to the currently explored region of the fitness landscape at almost no computational overhead. The empirical validation of the approach on standard benchmarks, comparatively to CMA-ES and recent surrogate-based CMA-ES, demonstrates the efficiency and scalability of the proposed approach

    Hybrid differential evolution and particle swarm optimization for optimal well placement

    Full text link
    There is no gainsaying that determining the optimal number, type, and location of hydrocarbon reservoir wells is a very important aspect of field development planning. The reason behind this fact is not farfetched—the objective of any field development exercise is to maximize the total hydrocarbon recovery, which for all intents and purposes, can be measured by an economic criterion such as the net present value of the reservoir during its estimated operational life-cycle. Since the cost of drilling and completion of wells can be significantly high (millions of dollars), there is need for some form of operational and economic justification of potential well configuration, so that the ultimate purpose of maximizing production and asset value is not defeated in the long run. The problem, however, is that well optimization problems are by no means trivial. Inherent drawbacks include the associated computational cost of evaluating the objective function, the high dimensionality of the search space, and the effects of a continuous range of geological uncertainty. In this paper, the differential evolution (DE) and the particle swarm optimization (PSO) algorithms are applied to well placement problems. The results emanating from both algorithms are compared with results obtained by applying a third algorithm called hybrid particle swarm differential evolution (HPSDE)—a product of the hybridization of DE and PSO algorithms. Three cases involving the placement of vertical wells in 2-D and 3-D reservoir models are considered. In two of the three cases, a max-mean objective robust optimization was performed to address geological uncertainty arising from the mismatch between real physical reservoir and the reservoir model. We demonstrate that the performance of DE and PSO algorithms is dependent on the total number of function evaluations performed; importantly, we show that in all cases, HPSDE algorithm outperforms both DE and PSO algorithms. Based on the evidence of these findings, we hold the view that hybridized metaheuristic optimization algorithms (such as HPSDE) are applicable in this problem domain and could be potentially useful in other reservoir engineering problems
    corecore