48 research outputs found

    Accessible High-Throughput Virtual Screening Molecular Docking Software for Students and Educators

    Get PDF
    We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms

    Turbulent Liquid-Liquid Dispersion in Sulzer SMX Mixer

    Get PDF
    This paper presents an experimental study of pressure drop of single-phase flow and liquid−liquid dispersion through a Sulzer SMX mixer in the turbulent flow regime. Emulsification experiments are performed with various numbers of mixing elements from 2 to 20 and different flow rates ranging from 204 to 600 L/h. Pressure drop in single phase flow when Re is greater than 800 is modeled using a correlation based on the Blasius approach. The pressure drop is quantified at high Reynolds numbers for a liquid−liquid system. The droplet size distribution evolves along the mixer, and 10 mixing elements are required to reach break-up coalescence equilibrium in the case of emulsification experiments. Finally, assuming Kolmogorov’s theory of isotropic turbulence, a new correlation is established to predict the Sauter mean diameter in this mixing device as a function of the Reynolds and Weber numbers as well as the number of mixing elements

    Cancer-Associated Venous Thromboembolic Disease, Version 1.2015

    No full text
    The NCCN Guidelines for Cancer-Associated Venous Thromboembolic Disease outline strategies for treatment and prevention of venous thromboembolism (VTE) in adult patients with a diagnosis of cancer or for whom cancer is clinically suspected. VTE is a common complication in patients with cancer, which places them at greater risk for morbidity and mortality. Therefore, risk-appropriate prophylaxis is an essential component for the optimal care of inpatients and outpatients with cancer. Critical to meeting this goal is ensuring that patients get the most effective medication in the correct dose. Body weight has a significant impact on blood volume and drug clearance. Because obesity is a common health problem in industrialized societies, cancer care providers are increasingly likely to treat obese patients in their practice. Obesity is a risk factor common to VTE and many cancers, and may also impact the anticoagulant dose needed for safe and effective prophylaxis. These NCCN Guidelines Insights summarize the data supporting new dosing recommendations for VTE prophylaxis in obese patients with cancer
    corecore