3 research outputs found

    Tachycardiomyopathy entails a dysfunctional pattern of interrelated mitochondrial functions

    Get PDF
    Tachycardiomyopathy is characterised by reversible left ventricular dysfunction, provoked by rapid ventricular rate. While the knowledge of mitochondria advanced in most cardiomyopathies, mitochondrial functions await elucidation in tachycardiomyopathy. Pacemakers were implanted in 61 rabbits. Tachypacing was performed with 330 bpm for 10 days (n = 11, early left ventricular dysfunction) or with up to 380 bpm over 30 days (n = 24, tachycardiomyopathy, TCM). In n = 26, pacemakers remained inactive (SHAM). Left ventricular tissue was subjected to respirometry, metabolomics and acetylomics. Results were assessed for translational relevance using a human-based model: induced pluripotent stem cell derived cardiomyocytes underwent field stimulation for 7 days (TACH–iPSC–CM). TCM animals showed systolic dysfunction compared to SHAM (fractional shortening 37.8 ± 1.0% vs. 21.9 ± 1.2%, SHAM vs. TCM, p < 0.0001). Histology revealed cardiomyocyte hypertrophy (cross-sectional area 393.2 ± 14.5 µm2 vs. 538.9 ± 23.8 µm2, p < 0.001) without fibrosis. Mitochondria were shifted to the intercalated discs and enlarged. Mitochondrial membrane potential remained stable in TCM. The metabolite profiles of ELVD and TCM were characterised by profound depletion of tricarboxylic acid cycle intermediates. Redox balance was shifted towards a more oxidised state (ratio of reduced to oxidised nicotinamide adenine dinucleotide 10.5 ± 2.1 vs. 4.0 ± 0.8, p < 0.01). The mitochondrial acetylome remained largely unchanged. Neither TCM nor TACH–iPSC–CM showed relevantly increased levels of reactive oxygen species. Oxidative phosphorylation capacity of TCM decreased modestly in skinned fibres (168.9 ± 11.2 vs. 124.6 ± 11.45 pmol·O2·s−1·mg−1 tissue, p < 0.05), but it did not in isolated mitochondria. The pattern of mitochondrial dysfunctions detected in two models of tachycardiomyopathy diverges from previously published characteristic signs of other heart failure aetiologies

    Alterations in the Kynurenine&ndash;Tryptophan Pathway and Lipid Dysregulation Are Preserved Features of COVID-19 in Hemodialysis

    No full text
    Coronavirus disease 2019 (COVID-19)-induced metabolic alterations have been proposed as a source for prognostic biomarkers and may harbor potential for therapeutic exploitation. However, the metabolic impact of COVID-19 in hemodialysis (HD), a setting of profound a priori alterations, remains unstudied. To evaluate potential COVID-19 biomarkers in end-stage kidney disease (CKD G5), we analyzed the plasma metabolites in different COVID-19 stages in patients with or without HD. We recruited 18 and 9 asymptomatic and mild, 11 and 11 moderate, 2 and 13 severely affected, and 10 and 6 uninfected HD and non-HD patients, respectively. Plasma samples were taken at the time of diagnosis and/or upon admission to the hospital and analyzed by targeted metabolomics and cytokine/chemokine profiling. Targeted metabolomics confirmed stage-dependent alterations of the metabolome in non-HD patients with COVID-19, which were less pronounced in HD patients. Elevated kynurenine levels and lipid dysregulation, shown by an increase in circulating free fatty acids and a decrease in lysophospholipids, could distinguish patients with moderate COVID-19 from non-infected individuals in both groups. Kynurenine and lipid alterations were also associated with ICAM-1 and IL-15 levels in HD and non-HD patients. Our findings support the kynurenine pathway and plasma lipids as universal biomarkers of moderate and severe COVID-19 independent of kidney function

    Insights into the Composition of a Co-Culture of 10 Probiotic Strains (OMNi BiOTiC&reg; AAD10) and Effects of Its Postbiotic Culture Supernatant

    No full text
    Background: We aimed to gain insights in a co-culture of 10 bacteria and their postbiotic supernatant. Methods: Abundances and gene expression were monitored by shotgun analysis. The supernatant was characterized by liquid chromatography mass spectroscopy (LC-MS) and gas chromatography mass spectroscopy (GC-MS). Supernatant was harvested after 48 h (S48) and 196 h (S196). Susceptibility testing included nine bacteria and C. albicans. Bagg albino (BALBc) mice were fed with supernatant or culture medium. Fecal samples were obtained for 16S analysis. Results: A time-dependent decrease of the relative abundances and gene expression of L. salivarius, L. paracasei, E. faecium and B. longum/lactis and an increase of L. plantarum were observed. Substances in LC-MS were predominantly allocated to groups amino acids/peptides/metabolites and nucleotides/metabolites, relating to gene expression. Fumaric, panthotenic, 9,3-methyl-2-oxovaleric, malic and aspartic acid, cytidine monophosphate, orotidine, phosphoserine, creatine, tryptophan correlated to culture time. Supernatant had no effect against anaerobic bacteria. S48 was reactive against S. epidermidis, L. monocytogenes, P. aeruginosae, E. faecium and C. albicans. S196 against S. epidermidis and Str. agalactiae. In vivo S48/S196 had no effect on alpha/beta diversity. Linear discriminant analysis effect size (LEfSe) and analysis of composition of microbiomes (ANCOM) revealed an increase of Anaeroplasma and Faecalibacterium prausnitzii. Conclusions: The postbiotic supernatant had positive antibacterial and antifungal effects in vitro and promoted the growth of distinct bacteria in vivo
    corecore