4 research outputs found

    Hybrid Encapsulation Structures Based On β-carotene-loaded Nanoliposomes Within Electrospun Fibers.

    No full text
    Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes incorporated within the polymeric ultrathin fibers produced through electrospinning were developed to improve the photostability of the antioxidant. These novel materials were intended to incorporate β-carotene into water-based food formulations, overcoming the existing limitations associated with its hydrophobic character. Initially, both empty and antioxidant-loaded nanoliposomes were developed and incorporated into polyvinyl alcohol (PVOH) and polyethylene oxide (PEO) solutions. The changes in the solution properties were evaluated to determine their effects on the electrospinning processing. The mixed polymer solutions were subsequently electrospun to produce hybrid nanoliposome-loaded ultrathin fibers. FTIR analysis confirmed the presence of phospholipid molecules inside the electrospun fibers. These ultrathin fibers were evaluated regarding their morphology, diameter, internal β-carotene distribution and stability against UV irradiation. Liposomal release studies from the electrospun fibers were also undertaken, confirming the presence of the liposomal structures after dissolving the electrospun fibers in water.134475-48

    Cationic liposomes produced via ethanol injection method for dendritic cell therapy

    No full text
    Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290 nm to 110 nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128 nm to 107 nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation274249263FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informaçã

    Cationic liposomes produced via ethanol injection method for dendritic cell therapy

    No full text
    <p>Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290 nm to 110 nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128 nm to 107 nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.</p
    corecore