4 research outputs found

    Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma

    Get PDF
    We investigated whether the outcome prediction of patients with aggressive B-cell lymphoma can be improved by combining clinical, molecular genotype, and radiomics features. MYC, BCL2, and BCL6 rearrangements were assessed using fluorescence in situ hybridization. Seventeen radiomics features were extracted from the baseline positron emission tomography–computed tomography of 323 patients, which included maximum standardized uptake value (SUV(max)), SUV(peak), SUV(mean), metabolic tumor volume (MTV), total lesion glycolysis, and 12 dissemination features pertaining to distance, differences in uptake and volume between lesions, respectively. Logistic regression with backward feature selection was used to predict progression after 2 years. The predictive value of (1) International Prognostic Index (IPI); (2) IPI plus MYC; (3) IPI, MYC, and MTV; (4) radiomics; and (5) MYC plus radiomics models were tested using the cross-validated area under the curve (CV-AUC) and positive predictive values (PPVs). IPI yielded a CV-AUC of 0.65 ± 0.07 with a PPV of 29.6%. The IPI plus MYC model yielded a CV-AUC of 0.68 ± 0.08. IPI, MYC, and MTV yielded a CV-AUC of 0.74 ± 0.08. The highest model performance of the radiomics model was observed for MTV combined with the maximum distance between the largest lesion and another lesion, the maximum difference in SUV(peak) between 2 lesions, and the sum of distances between all lesions, yielding an improved CV-AUC of 0.77 ± 0.07. The same radiomics features were retained when adding MYC (CV-AUC, 0.77 ± 0.07). PPV was highest for the MYC plus radiomics model (50.0%) and increased by 20% compared with the IPI (29.6%). Adding radiomics features improved model performance and PPV and can, therefore, aid in identifying poor prognosis patients

    Potential and pitfalls of Zr-89-immuno-PET to assess target status: Zr-89-trastuzumab as an example: 89Zr-trastuzumab as an example

    No full text
    Background: 89Zirconium-immuno-positron emission tomography (89Zr-immuno-PET) is used for assessment of target status to guide antibody-based therapy. We aim to determine the relation between antibody tumor uptake and target concentration to improve future study design and interpretation. Methods: The relation between tumor uptake and target concentration was predicted by mathematical modeling of 89Zr-labeled antibody disposition in the tumor. Literature values for trastuzumab kinetics were used to provide an example. Results: 89Zr-trastuzumab uptake initially increases with increasing target concentration, until it levels off to a constant value. This is determined by the total administered mass dose of trastuzumab. For a commonly used imaging dose of 50 mg 89Zr-trastuzumab, uptake can discriminate between immunohistochemistry score (IHC) 0 versus 1–2–3. Conclusion: The example for 89Zr-trastuzumab illustrates the potential to assess target expression. The pitfall of false-positive findings depends on the cut-off to define clinical target positivity (i.e., IHC 3) and the administered mass dose

    Interobserver reproducibility of tumor uptake quantification with 89Zr-immuno-PET: a multicenter analysis

    Get PDF
    Purpose: In-vivo quantification of tumor uptake of 89-zirconium (89Zr)-labelled monoclonal antibodies (mAbs) with PET provides a potential tool in strategies to optimize tumor targeting and therapeutic efficacy. A specific challenge for 89Zr-immuno-PET is low tumor contrast. This is expected to result in interobserver variation in tumor delineation. Therefore, the aim of this study was to determine interobserver reproducibility of tumor uptake measures by tumor delineation on 89Zr-immuno-PET scans. Methods: Data were obtained from previously published clinical studies performed with 89Zr-rituximab, 89Zr-cetuximab and 89Zr-trastuzumab. Tumor lesions on 89Zr-immuno-PET were identified as focal uptake exceeding local background by a nuclear medicine physician. Three observers independently manually delineated volumes of interest (VOI). Maximum, peak and mean standardized uptake values (SUVmax, SUVpeak and SUVmean) were used to quantify tumor uptake. Interobserver variability was expressed as the coefficient of variation (CoV). The performance of semi-automatic VOI delineation using 50% of background-corrected ACpeak was described. Results: In total, 103 VOI were delineated (3–6 days post injection (D3-D6)). Tumor uptake (median, interquartile range) was 9.2 (5.2–12.6), 6.9 (4.0–9.6) and 5.5 (3.3–7.8) for SUVmax, SUVpeak and SUVmean. Interobserver variability was 0% (0–12), 0% (0–2) and 7% (5–14), respectively (n = 103). The success rate of the semi-automatic method was 45%. Inclusion of background was the main reason for failure of semi-automatic VOI. Conclusions: This study shows that interobserver reproducibility of tumor uptake quantification on 89Zr-immuno-PET was excellent for SUVmax and SUVpeak using a standardized manual procedure for tumor segmentation. Semi-automatic delineation was not robust due to limited tumor contrast
    corecore