16 research outputs found

    Development, Characterisation And Release Study Of Encapsulated Curcumin Microparticles.

    Get PDF
    Curcumin, the major yellow pigment of Curcuma longa L., has been traditionally used to treat inflammation, skin wounds and tumors. The major disadvantage of curcumin is its high colour intensity, which stains fabrics when in contact with the treated skin

    Rehydrated sterically stabilized phospholipid nanomicelles of budesonide for nebulization: physicochemical characterization and in vitro, in vivo evaluations

    Get PDF
    Mohanad Naji Sahib, Yusrida Darwis, Kok Khiang Peh, Shaymaa Abdalwahed Abdulameer, Yvonne Tze Fung TanSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MalaysiaBackground: Inhaled corticosteroids provide unique systems for local treatment of asthma or chronic obstructive pulmonary disease. However, the use of poorly soluble drugs for nebulization has been inadequate, and many patients rely on large doses to achieve optimal control of their disease. Theoretically, nanotechnology with a sustained-release formulation may provide a favorable therapeutic index. The aim of this study was to determine the feasibility of using sterically stabilized phospholipid nanomicelles of budesonide for pulmonary delivery via nebulization.Methods: PEG5000-DSPE polymeric micelles containing budesonide (BUD-SSMs) were prepared by the coprecipitation and reconstitution method, and the physicochemical and pharmacodynamic characteristics of BUD-SSMs were investigated.Results: The optimal concentration of solubilized budesonide at 5 mM PEG5000-DSPE was 605.71 ± 6.38 µg/mL, with a single-sized peak population determined by photon correlation spectroscopy and a particle size distribution of 21.51 ± 1.5 nm. The zeta potential of BUD-SSMs was -28.43 ± 1.98 mV. The percent entrapment efficiency, percent yield, and percent drug loading of the lyophilized formulations were 100.13% ± 1.09%, 97.98% ± 1.95%, and 2.01% ± 0.02%, respectively. Budesonide was found to be amorphous by differential scanning calorimetry, and had no chemical interaction with PEGylated polymer according to Fourier transform infrared spectroscopy. Transmission electron microscopic images of BUD-SSMs revealed spherical nanoparticles. BUD-SSMs exhibited prolonged dissolution behavior compared with Pulmicort Respules® (P , 0.05). Aerodynamic characteristics indicated significantly higher deposition in the lungs compared with Pulmicort Respules®. The mass median aerodynamic, geometric standard deviation, percent emitted dose, and the fine particle fraction were 2.83 ± 0.08 µm, 2.33 ± 0.04 µm, 59.13% ± 0.19%, and 52.31% ± 0.25%, respectively. Intratracheal administration of BUD-SSMs 23 hours before challenge (1 mg/kg) in an asthmatic/chronic obstructive pulmonary disease rat model led to a significant reduction in inflammatory cell counts (76.94 ± 5.11) in bronchoalveolar lavage fluid compared with administration of Pulmicort Respules® (25.06 ± 6.91).Conclusion: The BUD-SSMs system might be advantageous for asthma or chronic obstructive pulmonary disease and other inflammatory airway diseases.Keywords: micelles, PEGylated polymer, aerodynamics, pharmacodynamic

    Solubilization of beclomethasone dipropionate in sterically stabilized phospholipid nanomicelles (SSMs): physicochemical and in vitro evaluations

    Get PDF
    Mohanad Naji Sahib, Shaymaa Abdalwahed Abdulameer, Yusrida Darwis, Kok Khiang Peh, Yvonne Tze Fung TanSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MalaysiaBackground: The local treatment of lung disorders such as asthma and chronic obstructive pulmonary disease via pulmonary drug delivery offers many advantages over oral or intravenous routes of administration. This is because direct deposition of a drug at the diseased site increases local drug concentrations, which improves the pulmonary receptor occupancy and reduces the overall dose required, therefore reducing the side effects that result from high drug doses. From a clinical point of view, although jet nebulizers have been used for aerosol delivery of water-soluble compounds and micronized suspensions, their use with hydrophobic drugs has been inadequate.Aim: To evaluate the feasibility of sterically stabilized phospholipid nanomicelles (SSMs) loaded with beclomethasone dipropionate (BDP) as a carrier for pulmonary delivery.Methods: 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy-poly(ethylene glycol 5000) polymeric micelles containing BDP (BDP-SSMs) were prepared by the coprecipitation and reconstitution method, and the physicochemical and in vitro characteristics of BDP-SSMs were investigated.Results: BDP-SSMs were successfully prepared with a content uniformity and reproducibility suitable for pulmonary administration. The maximum solubility of BDP in SSMs was approximately 1300 times its actual solubility. The particle size and zeta potential of BDP-SSMs were 19.89 ± 0.67 nm and -28.03 ± 2.05 mV, respectively. The SSMs system slowed down the release of BDP and all of the aerodynamic values of the aerosolized rehydrated BDP-SSMs were not only acceptable but indicated a significant level of deposition in the lungs.Conclusion: The SSM system might be an effective way of improving the therapeutic index of nebulized, poorly soluble corticosteroids.Keywords: beclomethasone, PEGylated polymer, aerodynamic, in vitro dissolutio

    Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin

    Get PDF
    The objectives of the study were to investigate the effects of β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HPβCD) on the solubility and dissolution rate of norfloxacin prepared using three different methods, at drug to cyclodextrin weight ratios of 1:1, 1:2, 1:4 and 1:8. All the methods increased the solubility and dissolution rate of norfloxacin via inclusion complexation with βCD and HPβCD. Norfloxacin was converted from crystalline to amorphous form through inclusion complexation. Solvent evaporation method was the most effective method in terms of norfloxacin solubilisation, while inclusion complex of HPβCD has higher solubility than βCD complex when prepared using the same procedure

    Fast and Sensitive HPLC-ESI-MS/MS Method for Etoricoxib Quantification in Human Plasma and Application to Bioequivalence Study

    No full text
    Etoricoxib is a non-steroidal anti-inflammatory drug (NSAID) used to treat pain and inflammation. The objective of the current study was to develop a sensitive, fast and high-throughput HPLC-ESI-MS/MS method to measure etoricoxib levels in human plasma using a one-step methanol protein precipitation technique. A tandem mass spectrometer equipped with an electrospray ionization (ESI) source operated in a positive mode and multiple reaction monitoring (MRM) were used for data collection. The quantitative MRM transition ions were m/z 359.15 > 279.10 and m/z 363.10 > 282.10 for etoricoxib and IS. The linear range was from 10.00 to 4000.39 ng/mL and the validation parameters were within the acceptance limits of the European Medicine Agency (EMA) and Food and Drug Analysis (FDA) guidelines. The present method was sensitive (10.00 ng/mL with S/N > 40), simple, selective (K prime > 2), and fast (short run time of 2 min), with negligible matrix effect and consistent recovery, suitable for high throughput analysis. The method was used to quantitate etoricoxib plasma concentrations in a bioequivalence study of two 120 mg etoricoxib formulations. Incurred sample reanalysis results further supported that the method was robust and reproducible
    corecore