280 research outputs found

    Removing noise from pyrosequenced amplicons

    Get PDF
    Background In many environmental genomics applications a homologous region of DNA from a diverse sample is first amplified by PCR and then sequenced. The next generation sequencing technology, 454 pyrosequencing, has allowed much larger read numbers from PCR amplicons than ever before. This has revolutionised the study of microbial diversity as it is now possible to sequence a substantial fraction of the 16S rRNA genes in a community. However, there is a growing realisation that because of the large read numbers and the lack of consensus sequences it is vital to distinguish noise from true sequence diversity in this data. Otherwise this leads to inflated estimates of the number of types or operational taxonomic units (OTUs) present. Three sources of error are important: sequencing error, PCR single base substitutions and PCR chimeras. We present AmpliconNoise, a development of the PyroNoise algorithm that is capable of separately removing 454 sequencing errors and PCR single base errors. We also introduce a novel chimera removal program, Perseus, that exploits the sequence abundances associated with pyrosequencing data. We use data sets where samples of known diversity have been amplified and sequenced to quantify the effect of each of the sources of error on OTU inflation and to validate these algorithms

    Dynamics of MBD2 deposition across methylated DNA regions during malignant transformation of human mammary epithelial cells

    Get PDF
    DNA methylation is thought to induce transcriptional silencing through the combination of two mechanisms: the repulsion of transcriptional activators unable to bind their target sites when methylated, and the recruitment of transcriptional repressors with specific affinity for methylated DNA. The Methyl CpG Binding Domain proteins MeCP2, MBD1 and MBD2 belong to the latter category. Here, we present MBD2 ChIPseq data obtained from the endogenous MBD2 in an isogenic cellular model of oncogenic transformation of human mammary cells. In immortalized (HMEC-hTERT) or transformed (HMLER) cells, MBD2 was found in a large proportion of methylated regions and associated with transcriptional silencing. A redistribution of MBD2 on methylated DNA occurred during oncogenic transformation, frequently independently of local DNA methylation changes. Genes downregulated during HMEC-hTERT transformation preferentially gained MBD2 on their promoter. Furthermore, depletion of MBD2 induced an upregulation of MBD2-bound genes methylated at their promoter regions, in HMLER cells. Among the 3,160 genes downregulated in transformed cells, 380 genes were methylated at their promoter regions in both cell lines, specifically associated by MBD2 in HMLER cells, and upregulated upon MBD2 depletion in HMLER. The transcriptional MBD2-dependent downregulation occurring during oncogenic transformation was also observed in two additional models of mammary cell transformation. Thus, the dynamics of MBD2 deposition across methylated DNA regions was associated with the oncogenic transformation of human mammary cells

    Permanence of the information given during oncogenetic counseling to persons at familial risk of breast/ovarian and/or colon cancer

    Get PDF
    How long counselees retain the information given during their genetic consultation is of major importance. To address this issue, we conducted a survey among the 3500 families that have been offered genetic counseling at our Center since 1988. In August 2007, we mailed a questionnaire to a representative subset of 579 persons belonging to breast/ovarian or colon cancer families seen in the last 10 years, either carrying an identified mutation or not. Targeted topics included the meaning of hereditary predisposition, the medical prevention related to the familial risk, the steps to undertake for a new family member to enter the genetic testing program and general knowledge of hereditary predisposition to cancer. A total of 91 randomized non-respondents were sent a second, more inciting letter, in order to assess any non-response bias. Overall, 337 questionnaires were collected: response rate was 58%. Standardized average knowledge was 7.28±1.52 of 10. Scores were lowest concerning medical prevention. The level of knowledge decreased with age (P<10−6), but increased with educational level (P<10−5) and mutation status (P=0.01). Surprisingly, no erosion of patients' knowledge over the time was observed (P=0.41). Among persons at hereditary risk of colon cancer, the level of knowledge tended to improve with time, in contrast to the breast/ovarian group (P=0.017). Among persons with a familial risk of breast/ovarian or colon cancer, a renewal of oncogenetic counseling does not seem necessary to maintain the level of specific knowledge. Measures to help patients follow their medical prevention, as organizing or checking their medical examinations, seem indicated

    Clinical practice guidelines for BRCA1 and BRCA2 genetic testing

    Get PDF
    BRCA1 and BRCA2 gene pathogenic variants account for most hereditary breast cancer and are increasingly used to determine eligibility for PARP inhibitor (PARPi) therapy of BRCA-related cancer. Because issues of BRCA testing in clinical practice now overlap with both preventive and therapeutic management, updated and comprehensive practice guidelines for BRCA genotyping are needed. The integrative recommendations for BRCA testing presented here aim to (1) identify individuals who may benefit from genetic counselling and risk-reducing strategies; (2) update germline and tumour-testing indications for PARPi-approved therapies; (3) provide testing recommendations for personalised management of early and metastatic breast cancer; and (4) address the issues of rapid process and tumour analysis. An international group of experts, including geneticists, medical and surgical oncologists, pathologists, ethicists and patient representatives, was commissioned by the French Society of Predictive and Personalised Medicine (SFMPP). The group followed a methodology based on specific formal guidelines development, including (1) evaluating the likelihood of BRCAm from a combined systematic review of the literature, risk assessment models and expert quotations, and (2) therapeutic values of BRCAm status for PARPi therapy in BRCA-related cancer and for management of early and advanced breast cancer. These international guidelines may help clinicians comprehensively update and standardise BRCA testing practices

    The "extreme phenotype approach" applied to male breast cancer allows the identification of rare variants of ATR as potential breast cancer susceptibility alleles

    Get PDF
    In oncogenetics, some patients could be considered as "extreme phenotypes", such as those with very early onset presentation or multiple primary malignancies, unusually high numbers of cancers of the same spectrum or rare cancer types in the same parental branch. For these cases, a genetic predisposition is very likely, but classical candidate gene panel analyses often and frustratingly remains negative. In the framework of the EX2TRICAN project, exploring unresolved extreme cancer phenotypes, we applied exome sequencing on rare familial cases with male breast cancer, identifying a novel pathogenic variant of ATR (p.Leu1808*). ATR has already been suspected as being a predisposing gene to breast cancer in women. We next identified 3 additional ATR variants in a cohort of both male and female with early onset and familial breast cancers (c.7762-2A>C; c.2078+1G>A; c.1A>G). Further molecular and cellular investigations showed impacts on transcripts for variants affecting splicing sites and reduction of ATR expression and phosphorylation of the ATR substrate CHEK1. This work further demonstrates the interest of an extended genetic analysis such as exome sequencing to identify very rare variants that can play a role in cancer predisposition in extreme phenotype cancer cases unexplained by classical cancer gene panels testing

    Multifactorial Analysis of Differences Between Sporadic Breast Cancers and Cancers Involving BRCA1 and BRCA2 Mutations

    Get PDF
    Background: We have previously demonstrated that breast cancers associated with inherited BRCA1 and BRCA2 gene mutations differ from each other in their histopathologic appearances and that each of these types differs from breast cancers in patients unselected for family history (i.e., sporadic cancers). We have now conducted a more detailed examination of cytologic and architectural features of these tumors. Methods: Specimens of tumor tissue (5-µm-thick sections) were examined independently by two pathologists, who were unaware of the case or control subject status, for the presence of cell mitosis, lymphocytic infiltration, continuous pushing margins, and solid sheets of cancer cells; cell nuclei, cell nucleoli, cell necrosis, and cell borders were also evaluated. The resulting data were combined with previously available information on tumor type and tumor grade and further evaluated by multifactorial analysis. All statistical tests are two-sided. Results: Cancers associated with BRCA1 mutations exhibited higher mitotic counts (P = .001), a greater proportion of the tumor with a continuous pushing margin (P<.0001), and more lymphocytic infiltration (P = .002) than sporadic (i.e., control) cancers. Cancers associated with BRCA2 mutations exhibited a higher score for tubule formation (fewer tubules) (P = .0002), a higher proportion of the tumor perimeter with a continuous pushing margin (P<.0001), and a lower mitotic count (P = .003) than control cancers. Conclusions: Our study has identified key features of the histologic phenotypes of breast cancers in carriers of mutant BRCA1 and BRCA2 genes. This information may improve the classification of breast cancers in individuals with a family history of the disease and may ultimately aid in the clinical management of patients. [J Natl Cancer Inst 1998;90:1138-45

    Differential Impact of EGFR-Targeted Therapies on Hypoxia Responses: Implications for Treatment Sensitivity in Triple-Negative Metastatic Breast Cancer

    Get PDF
    In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed.MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability.Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC
    corecore