23 research outputs found

    Exact Results in Quiver Quantum Mechanics and BPS Bound State Counting

    Full text link
    We exactly evaluate the partition function (index) of N=4 supersymmetric quiver quantum mechanics in the Higgs phase by using the localization techniques. We show that the path integral is localized at the fixed points, which are obtained by solving the BRST equations, and D-term and F-term conditions. We turn on background gauge fields of R-symmetries for the chiral multiplets corresponding to the arrows between quiver nodes, but the partition function does not depend on these R-charges. We give explicit examples of the quiver theory including a non-coprime dimension vector. The partition functions completely agree with the mathematical formulae of the Poincare polynomials (chi_y-genus) and the wall crossing for the quiver moduli spaces . We also discuss exact computation of the expectation values of supersymmetric (Q-closed) Wilson loops in the quiver theory.Comment: 40 pages, 7 figures; v2: minor corrections and references are added; v3: references added, typos corrected, discrepancy in the non-coprime case resolve

    Shear viscosity of a highly excited string and the black hole membrane paradigm

    Full text link
    Black hole membrane paradigm states that a certain viscous membrane seems to be sitting on a stretched horizon of a black hole from the viewpoint of a distant observer. We show that the shear viscosity of the fictitious membrane can be reproduced by a highly excited string covering the stretched horizon except for a numerical coefficient.Comment: 22 pages, no figure, minor correction

    Transport coefficients of D1-D5-P system and the membrane paradigm

    Full text link
    I discuss a correspondence between string theory and the black hole membrane paradigm in the context of the D1-D5-P system. By using the Kubo formula, I calculate transport coefficients of the effective string model induced by two kinds of minimal scalars. Then, I show that these transport coefficients exactly agree with the corresponding membrane transport coefficients of a five-dimensional near-extremal black hole with three charges.Comment: 11 pages, no figure; v2: minor corrections, accepted for publication in Physical Review

    One-loop unitarity of scalar field theories on Poincare invariant commutative nonassociative spacetimes

    Get PDF
    We study scalar field theories on Poincare invariant commutative nonassociative spacetimes. We compute the one-loop self-energy diagrams in the ordinary path integral quantization scheme with Feynman's prescription, and find that the Cutkosky rule is satisfied. This property is in contrast with that of noncommutative field theory, since it is known that noncommutative field theory with space/time noncommutativity violates unitarity in the above standard scheme, and the quantization procedure will necessarily become complicated to obtain a sensible Poincare invariant noncommutative field theory. We point out a peculiar feature of the non-locality in our nonassociative field theories, which may explain the property of the unitarity distinct from noncommutative field theories. Thus commutative nonassociative field theories seem to contain physically interesting field theories on deformed spacetimes.Comment: 25 pages, 9 figures ; appendix and references adde

    The Cutkosky rule of three dimensional noncommutative field theory in Lie algebraic noncommutative spacetime

    Full text link
    We investigate the unitarity of three dimensional noncommutative scalar field theory in the Lie algebraic noncommutative spacetime [x^i,x^j]=2i kappa epsilon^{ijk}x_k. This noncommutative field theory possesses a SL(2,R)/Z_2 group momentum space, which leads to a Hopf algebraic translational symmetry. We check the Cutkosky rule of the one-loop self-energy diagrams in the noncommutative phi^3 theory when we include a braiding, which is necessary for the noncommutative field theory to possess the Hopf algebraic translational symmetry at quantum level. Then, we find that the Cutkosky rule is satisfied if the mass is less than 1/(2^(1/2)kappa).Comment: 24 pages, 13 figures, a minor clarification, references adde
    corecore