83 research outputs found

    Association of urine autoantibodies with disease activity in systemic lupus erythematosus

    Get PDF
    ObjectiveThe presence of urinary autoantibodies in patients with systemic lupus erythematosus (SLE) has been confirmed by several studies; however, the significance of their presence in urine remains unclear. This study aims to further investigate the association between urine autoantibodies and disease activity as well as organ involvement in SLE.MethodsThis cross-sectional study included 89 SLE patients. Data collected included anti-nuclear antibody (ANA), anti-ENA antibodies, and anti-dsDNA antibody levels in both serum and urine, complement (C) 3, C4 levels in serum, SLE disease activity index-2000 (SLEDAI-2000), renal domains of SLEDAI (RSLEDAI) and non-renal SLEDAI (NRSLEDAI).ResultsThe rate of positive urine ANA (uANA) was 33.3% (29/87) among the enrolled patients. Compared to the uANA negative group, the positive group exhibited significantly higher SLEDAI-2000 scores (7.85 ± 5.88 vs. 18.69 ± 6.93, p < 0.001), RSLEDAI scores [0 (0, 4.0) vs. 12.0 (8.0, 16.0), p < 0.001], and NRSLEDAI [4 (2.0, 8.0) vs. 6.0 (4.0, 9.5), p = 0.038]. Patients with positive urine anti-Sm antibody demonstrated significantly elevated SLEDAI-2000 scores compared to those who were negative (25.0 ± 8.80 vs. 10.09 ± 6.63, p < 0.001). Similarly, they also had higher RSLEDAI [16.0 (12.0, 16.0) vs. 4.0 (0, 8.0), p < 0.001] and NRSLEDAI [9.5 (6.0, 13.5) vs. 4.0 (3.0, 8.0), p = 0.012], as well as a greater prevalence of renal involvement compared to their negative counterparts (100% vs. 58.2, p = 0.022). There was a positive correlation between uANA titer and both SLEDAI-2000 (rs = 0.663, p < 0.001) and RSLEDAI (rs = 0.662, p < 0.001). The serum anti-dsDNA antibody level did not exhibit a significant correlation with RSLEDAI (rs = 0.143, p = 0.182). Conversely, the urine anti-dsDNA antibody level demonstrated a significant positive correlation with RSLEDAI (rs = 0.529, p < 0.001).ConclusionUrine ANA is associated with both global SLEDAI and RSLEDAI scores. Urine anti-Sm antibody is associated with an increased incidence of renal involvement in SLE. The urine anti-dsDNA antibody level, rather than the serum anti-dsDNA antibody level, exhibits a significant association with RSLEDAI in SLE

    Highly pathogenic avian influenza A virus H5N1 NS1 protein induces caspase-dependent apoptosis in human alveolar basal epithelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is widely considered that the multifunctional NS1 protein of influenza A viruses contributes significantly disease pathogenesis by modulating a number of virus and host-cell processes, but it is highly controversial whether this non-structural protein is a proapoptotic or antiapoptotic factor in infected cells.</p> <p>Results</p> <p>NS1 protein of influenza A/chicken/Jilin/2003 virus, a highly pathogenic H5N1 strain, could induce apoptosis in the carcinomic human alveolar basal epithelial cells (A549) by electron microscopic and flow cytometric analyses. NS1 protein-triggered apoptosis in A549 cells is via caspase-dependent pathway.</p> <p>Conclusions</p> <p>Influenza A virus NS1 protein serves as a strong inducer of apoptosis in infected human respiratory epithelial cells and plays a critical role in disease pathogenesis.</p

    The NS1 protein of influenza a virus interacts with heat shock protein Hsp90 in human alveolar basal epithelial cells: Implication for virus-induced apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study showed that the NS1 protein of highly pathogenic avian influenza A virus H5N1 induced caspase-dependent apoptosis in human alveolar basal epithelial cells (A549), supporting its function as a proapoptotic factor during viral infection, but the mechanism is still unknown.</p> <p>Results</p> <p>To characterize the mechanism of NS1-induced apoptosis, we used a two-hybrid system to isolate the potential NS1-interacting partners in A549 cells. We found that heat shock protein 90 (Hsp90) was able to interact with the NS1 proteins derived from both H5N1 and H3N2 viruses, which was verified by co-immunoprecitation assays. Significantly, the NS1 expression in the A549 cells dramatically weakened the interaction between Apaf-1 and Hsp90 but enhanced its interaction with cytochrome c (Cyt c), suggesting that the competitive binding of NS1 to Hsp90 might promote the Apaf-1 to associate with Cyt c and thus facilitate the activation of caspase 9 and caspase 3.</p> <p>Conclusions</p> <p>The present results demonstrate that NS1 protein of Influenza A Virus interacts with heat hock protein Hsp90 and meidates the apoptosis induced by influenza A virus through the caspase cascade.</p

    Is biomass burning always a dominant contributor of fine aerosols in upper northern Thailand?

    Get PDF
    Biomass burning (BB) is an important contributor to the air pollution in Southeast Asia (SEA), but the emission sources remain great uncertainty. In this study, PM2.5 samples were collected from an urban (Chiang Mai University, CMU) and a rural (Nong Tao village, NT) site in Chiang Mai, Thailand from February to April (high BB season, HBB) and from June to September (low BB season, LBB) in 2018. Source apportionment of carbonaceous aerosols was carried out by Latin Hypercube Sampling (LHS) method incorporating the radiocarbon (14C) and organic markers (e.g., dehydrated sugars, aromatic acids, etc.). Thereby, carbonaceous aerosols were divided into the fossil-derived elemental carbon (ECf), BB-derived EC (ECbb), fossil-derived primary and secondary organic carbon (POCf, SOCf), BB-derived OC (OCbb) and the remaining OC (OCnf, other). The fractions of ECbb generally prevailed over ECf throughout the year. OCbb was the dominant contributor to total carbon with a clear seasonal trend (65.5 ± 5.8 % at CMU and 79.9 ± 7.6 % at NT in HBB, and 39.1 ± 7.9 % and 42.8 ± 4.6 % in LBB). The distribution of POCf showed a spatial difference with a higher contribution at CMU, while SOCf displayed a temporal variation with a greater fraction in LBB. OCnf, other was originated from biogenic secondary aerosols, cooking emissions and bioaerosols as resolved by the principal component analysis with multiple liner regression model. The OCnf, other contributed within a narrow range of 6.6 %-14.4 %, despite 34.9 ± 7.9 % at NT in LBB. Our results highlight the dominance of BB-derived fractions in carbonaceous aerosols in HBB, and call the attention to the higher production of SOC in LBB

    Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus

    Get PDF
    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance

    A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Get PDF
    BACKGROUND: The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. PRESENTATION OF THE HYPOTHESIS: Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. TESTING THE HYPOTHESIS: Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 × anti-C3d)-Fc lysis of HIV compared to untreated virus. IMPLICATIONS OF THE HYPOTHESIS: The targeted complement activator, (anti-gp120 × anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells

    ICOSLG-associated immunological landscape and diagnostic value in oral squamous cell carcinoma: a prospective cohort study

    Get PDF
    Background: We previously reported that stroma cells regulate constitutive and inductive PD-L1 (B7-H1) expression and immune escape of oral squamous cell carcinoma. ICOSLG (B7-H2), belongs to the B7 protein family, also participates in regulating T cells activation for tissue homeostasis via binding to ICOS and inducing ICOS+ T cell differentiation as well as stimulate B-cell activation, while it appears to be abnormally expressed during carcinogenesis. Clarifying its heterogeneous clinical expression pattern and its immune landscape is a prerequisite for the maximum response rate of ICOSLG-based immunotherapy in a specific population.Methods: This retrospective study included OSCC tissue samples (n = 105) to analyze the spatial distribution of ICOSLG. Preoperative peripheral blood samples (n = 104) and independent tissue samples (n = 10) of OSCC were collected to analyze the changes of immunocytes (T cells, B cells, NK cells and macrophages) according to ICOSLG level in different cellular contents.Results: ICOSLG is ubiquitous in tumor cells (TCs), cancer-associated fibroblasts (CAFs) and tumor infiltrating lymphocytes (TILs). Patients with high ICOSLGTCs or TILs showed high TNM stage and lymph node metastasis, which predicted a decreased overall or metastasis-free survival. This sub-cohort was featured with diminished CD4+ T cells and increased Foxp3+ cells in invasive Frontier in situ, and increased absolute numbers of CD3+CD4+ and CD8+ T cells in peripheral blood. ICOSLG also positively correlated with other immune checkpoint molecules (PD-L1, CSF1R, CTLA4, IDO1, IL10, PD1).Conclusion: Tumor cell-derived ICOSLG could be an efficient marker of OSCC patient stratification for precision immunotherapy

    Dynamic Slicing for Deep Neural Networks

    Full text link
    Program slicing has been widely applied in a variety of software engineering tasks. However, existing program slicing techniques only deal with traditional programs that are constructed with instructions and variables, rather than neural networks that are composed of neurons and synapses. In this paper, we propose NNSlicer, the first approach for slicing deep neural networks based on data flow analysis. Our method understands the reaction of each neuron to an input based on the difference between its behavior activated by the input and the average behavior over the whole dataset. Then we quantify the neuron contributions to the slicing criterion by recursively backtracking from the output neurons, and calculate the slice as the neurons and the synapses with larger contributions. We demonstrate the usefulness and effectiveness of NNSlicer with three applications, including adversarial input detection, model pruning, and selective model protection. In all applications, NNSlicer significantly outperforms other baselines that do not rely on data flow analysis.Comment: 11 pages, ESEC/FSE '2
    • …
    corecore