24 research outputs found

    Analysis on the difference of DC energy consumption of electric vehicles under repeat cycles

    No full text
    In order to avoid the problem of too many AC energy consumption cycles and time-consuming for the standard electric vehicle driving range test, the DC energy consumption test can be used to obtain the energy consumption of the test cycle at any time period and estimate the driving range. However, the rationality of intercepting part of the circulating DC energy consumption to estimate the whole process still lacks sufficient experimental support. Therefore, in this paper, two different electric vehicle prototypes were selected, and a complete energy consumption test experiment was carried out according to the standard test process. Through the test of DC energy consumption, the difference characteristics of electric vehicle driving braking energy and energy consumption under repeated cycles were analyzed. The fluctuation range provides data support for the use of DC power to evaluate the energy consumption of electric vehicle

    An Innovative Detection Method of High-Speed Railway Track Slab Supporting Block Plane Based on Point Cloud Data from 3D Scanning Technology

    No full text
    The dimension detection of high-speed railway track slabs is one of the most important tasks before the track slabs delivery. Based on the characteristics of a 3D scanner which can acquire a large amount of measurement data continuously and rapidly in a short time, this paper uses the integration of 3D scanner and the intelligent robot to detect the China Railway Track System (CRTSIII) track slab supporting block plane, then the dense and accurate supporting block plane point cloud data is obtained, and the point cloud data is registered with the established model. An improved Random Sample Consensus (RANSAC) plane fitting algorithm is also proposed to extract the data of supporting block plane point cloud in this paper. The detection method is verified and the quality analysis of the detection results is assessed by a lot of real point cloud data obtained on site. The results show that the method can meet the quality control of CRTSIII finished track slab and the detection standard. Compared with the traditional detection methods, the detection method proposed in this paper can complete the detection of a track slab in 7 min, which greatly improves the detection efficiency, and has better reliability. The method has wide application prospects in the field of railway component detection

    Adsorption and Electrochemical Detection of Bovine Serum Albumin Imprinted Calcium Alginate Hydrogel Membrane

    No full text
    In this paper, bovine serum albumin (BSA)-imprinted calcium alginate (CaAlg) hydrogel membrane was prepared using BSA as a template, sodium alginate (NaAlg) as a functional monomer, and CaCl2 as a cross-linker. The thickness of the CaAlg membrane was controlled by a glass rod enlaced with brass wires (the diameter was 0.1, 0.2, 0.3, 0.4, and 0.5 mm). The swelling properties of the CaAlg membranes prepared with different contents of NaAlg were researched. Circular dichroism indicated that the conformation of BSA did not change during the preparing and eluting process. The thinner the CaAlg hydrogel membrane was, the larger the adsorption capacity and the higher the imprinting efficiency of the CaAlg. The maximum adsorption capacity of molecularly imprinted polymer (MIP) and non-imprinted CaAlg hydrogel membrane (NIP) was 38.6 mg·g−1 and 9.2 mg·g−1, respectively, with an imprinting efficiency of 4.2. The MIP was loaded on the electrode to monitor the selective adsorption of BSA by voltammetry curve

    Study on the preparation and mechanical properties of purple ceramics

    No full text
    Abstract This paper aims at preparing a smart wearable purple ceramic that meet the color requirements of purple smart wear in the market after using zirconate neodymium as a chromogenic agent. However, the mechanical performance of zirconate neodymium purple ceramic is not satisfactory, especially it has an extremely low fracture toughness. To solve this, a 3 mol% yttria-stabilized zirconia (3YSZ) is added to zirconate neodymium in the preparation of multiphase ceramics to improve its mechanical properties. In this experiment, a series of ceramic samples with addition of increasing amount of 3YSZ 0, 20, 40, 50, 60, 70 and 80% were prepared in the 1400–1500 °C sintering temperature range. It was found that at the same temperature, the mechanical properties of the ceramic samples gradually improved with the increase in the 3YSZ content. Moreover, with the same content, the mechanical properties of the ceramic samples gradually improved with the decrease in temperature. The results show that when 3YSZ has a mass fraction of 80% and is sintered at 1400 °C, the fracture toughness of the prepared ceramic samples reaches 8.15 MPa‧m1/2, which is nearly two times higher than that of the monolithic neodymium zirconate 2.57 MPa‧m1/2. The Vickers hardness of the prepared ceramic samples reached 12.93 GPa, which is nearly 88% higher than the undoped neodymium zirconate. This indicates that the samples can be applied in smart wearables, such as mobile phone backplane, with a certain practical significance for engineering toughening of zirconate ceramics

    E3 Ubiquitin Ligases: The Operators of the Ubiquitin Code That Regulates the RLR and cGAS-STING Pathways

    No full text
    The outbreaks caused by RNA and DNA viruses, such as SARS-CoV-2 and monkeypox, pose serious threats to human health. The RLR and cGAS-STING pathways contain major cytoplasmic sensors and signaling transduction axes for host innate antiviral immunity. In physiological and virus-induced pathological states, the activation and inactivation of these signal axes are tightly controlled, especially post-translational modifications (PTMs). E3 ubiquitin ligases (E3s) are the direct manipulator of ubiquitin codons and determine the type and modification type of substrate proteins. Therefore, members of the E3s family are involved in balancing the host’s innate antiviral immune responses, and their functions have been extensively studied over recent decades. In this study, we overviewed the mechanisms of different members of three E3s families that mediate the RLR and cGAS-STING axes and analyzed them as potential molecular targets for the prevention and treatment of virus-related diseases
    corecore