70 research outputs found

    State-of-the-Art Calculation of the Decay Rate of Electroweak Vacuum in Standard Model

    Full text link
    The decay rate of the electroweak (EW) vacuum is calculated in the framework of the standard model (SM) of particle physics, using the recent progresses in the understanding of the decay rate of metastable vacuum in gauge theories. We give a manifestly gauge-invariant expression of the decay rate. We also perform a detailed numerical calculation of the decay rate. With the best-fit values of the SM parameters, we find that the decay rate of the EW vacuum per unit volume is about 10554 Gyr1Gpc310^{-554}\ {\rm Gyr^{-1}Gpc^{-3}}; with the uncertainty in the top mass, the decay rate is estimated as 10284101371 Gyr1Gpc310^{-284}-10^{-1371}\ {\rm Gyr^{-1}Gpc^{-3}}.Comment: 5 pages, 1 figure, published versio

    Higgs Mixing in the NMSSM and Light Higgsinos

    Full text link
    We explore the effects of Higgs mixing in the general next-to-minimal supersymmetric Standard Model (NMSSM). Extended to include a gauge singlet, the Higgs sector can naturally explain the observed Higgs boson mass in TeV scale supersymmetry without invoking large stop mixing. This is particularly the case when the singlet scalar is light so that singlet-doublet mixing increases the mass of the SM-like Higgs boson. In such a case the Higgs mixing has interesting implications following from the fact that the higgsino mass parameter and the singlet coupling to Higgs bilinear crucially depend on the Higgs boson masses and mixing angles. For the mixing compatible with the current LHC data on the Higgs signal rates, the higgsinos are required to be relatively light, around or below a few hundred GeV, as long as the heavy doublet Higgs boson has a mass smaller than about 250\sqrt{\tan\beta} GeV and the singlet-like Higgs boson is consistent with the LEP constraint. In addition, the Higgs coupling to photons can receive a sizable contribution of either sign from the charged-higgsino loops combined with singlet-doublet mixing.Comment: 26 pages, 5 figures, Higgs data updated, discussion extended, typos fixed, to appear in JHE

    Migdal Effect in Dark Matter Direct Detection Experiments

    Full text link
    The elastic scattering of an atomic nucleus plays a central role in dark matter direct detection experiments. In those experiments, it is usually assumed that the atomic electrons around the nucleus of the target material immediately follow the motion of the recoil nucleus. In reality, however, it takes some time for the electrons to catch up, which results in ionization and excitation of the atoms. In previous studies, those effects are taken into account by using the so-called Migdal's approach, in which the final state ionization/excitation are treated separately from the nuclear recoil. In this paper, we reformulate the Migdal's approach so that the "atomic recoil" cross section is obtained coherently, where we make transparent the energy-momentum conservation and the probability conservation. We show that the final state ionization/excitation can enhance the detectability of rather light dark matter in the GeV mass range via the {\it nuclear} scattering. We also discuss the coherent neutrino-nucleus scattering, where the same effects are expected.Comment: Integrated probability data fixed and Si.dat adde

    On the Gauge Invariance of the Decay Rate of False Vacuum

    Full text link
    We study the gauge invariance of the decay rate of the false vacuum for the model in which the scalar field responsible for the false vacuum decay has gauge quantum number. In order to calculate the decay rate, one should integrate out the field fluctuations around the classical path connecting the false and true vacua (i.e., so-called bounce). Concentrating on the case where the gauge symmetry is broken in the false vacuum, we show a systematic way to perform such an integration and present a manifestly gauge-invariant formula of the decay rate of the false vacuum.Comment: 17 pages, published versio

    Renormalization-Scale Uncertainty in the Decay Rate of False Vacuum

    Get PDF
    We study radiative corrections to the decay rate of false vacua, paying particular attention to the renormalization-scale dependence of the decay rate. The decay rate exponentially depends on the bounce action. The bounce action itself is renormalization scale dependent. To make the decay rate scale-independent, radiative corrections, which are due to the field fluctuations around the bounce, have to be included. We show quantitatively that the inclusion of the fluctuations suppresses the scale dependence, and hence is important for the precise calculation of the decay rate. We also apply our analysis to a supersymmetric model and show that the radiative corrections are important for the Higgs-stau system with charge breaking minima.Comment: 15 pages, 2 figures; added reference
    corecore