12 research outputs found

    Visualization of the radiofrequency lesion after pulmonary vein isolation using delayed enhancement magnetic resonance imaging fused with magnetic resonance angiography

    Get PDF
    AbstractBackgroundThe radiofrequency (RF) lesions for atrial fibrillation (AF) ablation can be visualized by delayed enhancement magnetic resonance imaging (DE-MRI). However, the quality of anatomical information provided by DE-MRI is not adequate due to its spatial resolution. In contrast, magnetic resonance angiography (MRA) provides similar information regarding the left atrium (LA) and pulmonary veins (PVs) as computed tomography angiography. We hypothesized that DE-MRI fused with MRA will compensate for the inadequate image quality provided by DE-MRI.MethodsDE-MRI and MRA were performed in 18 patients who underwent AF ablation (age, 60±9 years; LA diameter, 42±6mm). Two observers independently assessed the DE-MRI and DE-MRI fused with MRA for visualization of the RF lesion (score 0–2; where 0: not visualized and 2: excellent in all 14 segments of the circular RF lesion).ResultsDE-MRI fused with MRA was successfully performed in all patients. The image quality score was significantly higher in DE-MRI fused with MRA compared to DE-MRI alone (observer 1: 22 (18, 25) vs 28 (28, 28), p<0.001; observer 2: 24 (23, 25) vs 28 (28, 28), p<0.001).ConclusionsDE-MRI fused with MRA was superior to DE-MRI for visualization of the RF lesion owing to the precise information on LA and PV anatomy provided by DE-MRI

    Acquisition of the pulmonary venous and left atrial anatomy with non-contrast-enhanced MRI for catheter ablation of atrial fibrillation: Usefulness of two-dimensional balanced steady-state free precession

    No full text
    Background: Usually, the pulmonary venous and left atrial (PV–LA) anatomy is assessed with contrast-enhanced computed tomographic imaging for catheter ablation of atrial fibrillation (AF). A non-contrast-enhanced magnetic resonance (MR) imaging method has not been established. Three-dimensional balanced steady-state free precession (3D b-SSFP) sequences cannot visualize the PV–LA anatomy simultaneously because of the signal intensity defect of pulmonary veins. We compared two-dimensional (2D) b-SSFP sequences with 3D b-SSFP sequences in depicting the PV–LA anatomy with non-contrast-enhanced MR imaging for AF ablation. Methods: Eleven healthy volunteers underwent non-contrast-enhanced MR imaging with 3D b-SSFP and 2D b-SSFP sequences. The MR images were reconstructed on the 3D PV–LA surface image. Two experienced radiological technicians independently scored the multiplanar reformatted (MPR) images on a scale of 1–4 (from 1, not visualized, to 4, excellent definition). The overall score was a sum of 5 segments (LA and 4 PVs). Results: In the 2D b-SSFP method, MR imaging was successfully performed, and the 3D PV–LA surface image was precisely reconstructed in all healthy volunteers. The image score was significantly higher in the 2D b-SSFP method compared to the 3D b-SSFP method (19 [19; 20] vs. 12 [11; 15], p=0.004, for both observers). No PV signal intensity defects occurred in the 2D b-SSFP method. Conclusions: The 2D b-SSFP sequence was more useful than the 3D b-SSFP sequence in adequately depicting the PV–LA anatomy

    Visualizing radiofrequency lesions using delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation: A modification of the method used by the University of Utah group

    Get PDF
    Background: Atrial tissue fibrosis has previously been identified using delayed-enhancement MRI (DE-MRI) in patients with atrial fibrillation (AF). Although the clinical importance of DE-MRI is well recognized, the visualization of atrial fibrosis and radiofrequency (RF) lesions has still not been achieved in Japan, primarily because of the differences in contrast agents, volume-rendering tools, and technical experience. The objective of this study was to visualize RF lesions by using commercially available tools. Methods: DE-MRI was performed in 15 patients who had undergone AF ablation (age, 59±4 years, left atrium diameter, 40±2 mm). Specific parameters for MR scanning obtained from previous reports were modified. Results: Of the 15 images, the images of three patients were uninterpretable owing to low image quality. RF lesions could be visualized in 8 (67%) of the 12 patients. Conclusions: In the current study, we successfully demonstrated that RF lesions could be visualized in Japanese patients using DE-MRI, although only commercially available tools were used
    corecore