2,888 research outputs found

    Dark matter in the classically conformal B-L model

    Full text link
    When the classically conformal invariance is imposed on the minimal gauged B-L extended Standard Model (SM), the B-L gauge symmetry is broken by the Coleman-Weinberg mechanism naturally at the TeV scale. Introducing a new Z_2 parity in the model, we investigate phenomenology of a right-handed neutrino dark matter whose stability is ensured by the parity. We find that the relic abundance of the dark matter particle can be consistent with the observations through annihilation processes enhanced by resonances of either the SM Higgs boson, the B-L Higgs boson or the B-L gauge boson (Z' boson). Therefore, the dark matter mass is close to half of one of these boson masses. Due to the classically conformal invariance and the B-L gauge symmetry breaking via the Coleman-Weinberg mechanism, Higgs boson masses, Z' boson mass and the dark matter mass are all related, and we identify the mass region to be consistent with experimental results. We also calculate the spin-independent cross section of the dark matter particle off with nucleon and discuss implications for future direct dark matter search experiments.Comment: 13 pages, 4 figure

    Minimal Flavor Violation in the Minimal U(1)_{B-L} Model and Resonant Leptogenesis

    Full text link
    We investigate the resonant leptogenesis scenario in the minimally U(1)Bβˆ’LU(1)_{B-L} extended standard model with minimal flavor violation. In our model, the U(1)Bβˆ’LU(1)_{B-L} gauge symmetry is broken at the TeV scale and standard model singlet neutrinos gain Majorana masses of order TeV. In addition, we introduce a flavor symmetry on the singlet neutrinos at a scale higher than TeV. The flavor symmetry is explicitly broken by the neutrino Dirac Yukawa coupling, which induces splittings in the singlet neutrino Majorana masses at lower scales through renormalization group evolutions. We call this setup "minimal flavor violation". The mass-splittings are proportional to the tiny Dirac Yukawa coupling, and hence they automatically enhance the CP asymmetry parameter necessary for the resonant leptogenesis mechanism. In this paper, we calculate the baryon number yield by solving the Boltzmann equations, including the effects of U(1)Bβˆ’LU(1)_{B-L} gauge boson that also has TeV scale mass and causes washing-out of the singlet neutrinos in the course of thermal leptogenesis. The Dirac Yukawa coupling for neutrinos is fixed in terms of neutrino oscillation data and an arbitrary 3Γ—33 \times 3 complex-valued orthogonal matrix. We show that the right amount of baryon number asymmetry can be achieved through thermal leptogenesis in the context of the minimal flavor violation with singlet neutrinos and U(1)Bβˆ’LU(1)_{B-L} gauge boson at the TeV scale. These particles can be discovered at the LHC in the near future

    Resonant Leptogenesis in the Minimal B-L Extended Standard Model at TeV

    Full text link
    We investigate the resonant leptogenesis scenario in the minimal B-L extended standard model(SM) with the B-L symmetry breaking at the TeV scale. Through detailed analysis of the Boltzmann equations, we show how much the resultant baryon asymmetry via leptogenesis is enhanced or suppressed, depending on the model parameters, in particular, the neutrino Dirac Yukawa couplings and the TeV-scale Majorana masses of heavy degenerate neutrinos. In order to consider a realistic case, we impose a simple ansatz for the model parameters and analyze the neutrino oscillation parameters and the baryon asymmetry via leptogenesis as a function of only a single CP-phase. We find that for a fixed CP-phase all neutrino oscillation data and the observed baryon asymmetry of the present universe can be simultaneously reproduced.Comment: 25 pages, 15 figures, version to be published in Phys. Rev.

    Ultrafast spin-to-charge conversions of antiferromagnetic (111)-oriented L12\mathrm{L1_2}-Mn3Ir\mathrm{Mn_3Ir}

    Full text link
    Antiferromagnetic L12\mathrm{L1_2}-Mn3Ir\mathrm{Mn_3Ir} combines outstanding spin-transport properties with magnons in the terahertz (THz) frequency range. However, the THz radiation emitted by ultrafast spin-to-charge conversion via the inverse spin Hall effect remains unexplored. In this study, we measured the THz emission and transmission of a permalloy/(111)-oriented L12\mathrm{L1_2}-Mn3Ir\mathrm{Mn_3Ir} multilayer by THz time-domain spectroscopy. The spin Hall angle was determined to be approximately constant at 0.024 within a frequency range of 0.3-2.2 THz, in comparison with the THz spectroscopy of a permalloy/Pt multilayer. Our results not only demonstrate the potential of L12\mathrm{L1_2}-Mn3Ir\mathrm{Mn_3Ir} as a spintronic THz emitter but also provide insights into the THz spin transport properties of L12\mathrm{L1_2}-Mn3Ir\mathrm{Mn_3Ir}.Comment: 11 pages, 5 figure
    • …
    corecore