1,768 research outputs found
Domain Adaptation for Neural Networks by Parameter Augmentation
We propose a simple domain adaptation method for neural networks in a
supervised setting. Supervised domain adaptation is a way of improving the
generalization performance on the target domain by using the source domain
dataset, assuming that both of the datasets are labeled. Recently, recurrent
neural networks have been shown to be successful on a variety of NLP tasks such
as caption generation; however, the existing domain adaptation techniques are
limited to (1) tune the model parameters by the target dataset after the
training by the source dataset, or (2) design the network to have dual output,
one for the source domain and the other for the target domain. Reformulating
the idea of the domain adaptation technique proposed by Daume (2007), we
propose a simple domain adaptation method, which can be applied to neural
networks trained with a cross-entropy loss. On captioning datasets, we show
performance improvements over other domain adaptation methods.Comment: 9 page. To appear in the first ACL Workshop on Representation
Learning for NL
- …