85 research outputs found

    Nonvolatile flip-flop based on pseudo-spin-transistor architecture and its nonvolatile power-gating applications for low-power CMOS logic

    No full text
    We computationally analyzed performance and power-gating (PG) ability of a new nonvolatile delay flip-flop (NV-DFF) based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The high-performance energy-efficient PG operations of the NV-DFF can be achieved owing to its cell structure employing PS-MOSFETs that can electrically separate the STT-MTJs from the ordinary DFF part of the NV-DFF. This separation also makes it possible that the break-even time (BET) of the NV-DFF is designed by the size of the PS-MOSFETs without performance degradation of the normal DFF operations. The effect of the area occupation ratio of the NV-DFFs to a CMOS logic system on the BET was also analyzed. Although the optimized BET was varied depending on the area occupation ratio, energy-efficient fine-grained PG with a BET of several sub-microseconds was revealed to be achieved. We also proposed microprocessors and system-on-chip (SoC) devices using nonvolatile hierarchical-memory systems wherein NV-DFF and nonvolatile static random access memory (NV-SRAM) circuits are used as fundamental building blocks

    Conformational Fluctuations and Induced Orientation of a Protein, Its Solvation Shell, and Bulk Water in Weak Non-Unfolding External Electric Fields

    No full text
    Extreme external electric fields have been reported to disrupt the tertiary structure of stably folded proteins; however, the effects of weaker electric fields on many biomolecules, especially net-uncharged proteins, and on the surrounding aqueous environment have been rarely discussed. To explore these effects at the atomic level, here, we have used molecular dynamics simulations to estimate rotational motion and induced structural fluctuations in the model protein ubiquitin and its hydration layer due to applied non-unfolding electrostatic fields. When exposed to weak electric fields of up to 0.2 V nm⁻¹, ubiquitin displayed competition between internal structure-maintaining molecular interactions and the external orienting force, which disrupted the local structure in certain regions of the protein. Moreover, relative to hydration water, bulk water showed a greater tendency to align with the electric field, indicating that the presence of protein caused hydration water to acquire rotational mobility different from that in a pure-water system. The differential influence of the applied electric field on the hydration and bulk water surrounding ubiquitin will be common to almost all (nonmembrane) biomacromolecules. Our findings highlight the importance of local dipoles and their electric polarizability even in net-uncharged biomolecules
    corecore