5 research outputs found
Xanthones and Xanthone ‐‐D‐Glucosides from the Roots of Dönmez
Nine xanthone derivatives (1–9) were isolated from the roots of Polygala azizsancarii, which is a narrow endemic species for the flora of Türkiye. Based on all of the evidence, the structures of 1–9 were established as two previously undescribed xanthone O-glucosides, 3-O-β-D-glucopyranosyloxy-1,6-dihydroxy-2,5,7-trimethoxyxanthone (1), 3-O-β-D-glucopyranosyloxy-1,6-dihydroxy-2,7-dimethoxyxanthone (2), and seven previously described xanthones, 1,3,6-trihydroxy-2,5,7-trimethoxyxanthone (3), 1,3,6-trihydroxy-2,7-dimethoxyxanthone (4), 1,2,3,4,7-pentamethoxyxanthone (5), 1,3-dihydroxy-2,5,6,7-tetramethoxyxanthone (6), 1,3-dihydroxy-4,7-dimethoxyxanthone (7), 1,7-dihydroxy-3-methoxyxanthone (8), and 1,7-dihydroxy-2,3-methylenedioxyxanthone (9). The structures of the compounds were determined by spectroscopic methods, including 1D-NMR (1H-NMR, 13C-NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC, INADEQUATE), and HR-MS. The solid-state structures of 1–4, including the absolute configurations of the stereogenic carbons of the sugar moiety in 1 and 2, were established by X-ray crystal-structure analyses. For the newly described compounds, the trivial names sancarosides A (1) and B (2) are proposed
Ecdysteroids from the underground parts of Rhaponticum acaule (L.) DC
In addition to two known ecdysteroids, 20-hydroxyecdysone and turkesterone, three previously undescribed stigmastane-type ecdysteroids were isolated from the underground parts of Rhaponticum acaule (L.) DC. by chromatographic techniques (CC, VLC, MPLC). The structures of the compounds were established by chemical (acetylation) and spectroscopic methods including UV, IR, HRMS, 1D-NMR: 1H-NMR, 13C-NMR, DEPT-135. and 2D-NMR: COSY, NOESY, HSQC, HMBC. Two compounds were isolated as an isomeric mixture and each of them was purified and converted to the corresponding acetylated derivative. Based on all of the evidence, the structures of three undescribed stigmastane-type ecdysteroids were established as 2β,3β,11α,20β,22α,24,28-heptahydroxy-6-oxo-stigmast-7-en-25,29-lactone and the cyclic 22,29-hemiacetals 22R and 22S stigmast-7-en-29-al,2β,3β,11α,20α,22,28-hexahydroxy-6-oxo, and the trivial names acaulesterone and rhapocasterones A and B are suggested, respectively. The structures and absolute configurations of 20-hydroxyecdysone and cyclic-22,29-hemiacetal-22R-stigmast-7-en-29-al,2β,3β,11α,20α,22,28-hexahydroxy-6-oxo were confirmed by X-ray crystal-structure analyses of their acetyl derivatives
Biotransformation of ruscogenins by Cunninghamella blakesleeana NRRL 1369 and neoruscogenin by endophytic fungus Neosartorya hiratsukae
Biotransformation of steroidal ruscogenins (neoruscogenin and ruscogenin) was carried out with Cunninghamella blakesleeana NRRL 1369 and endophytic fungus Neosartorya hiratsukae yielding mainly P450 monooxygenase products together with a glycosylated compound. Fermentation of ruscogenins (75:25, neoruscogenin-ruscogenin mixture) with C. blakesleeana yielded 8 previously undescribed hydroxylated compounds. Furthermore, microbial transformation of neoruscogenin by endophytic fungus N. hiratsukae afforded three previously undescribed neoruscogenin derivatives. While hydroxylation at C-7, C-12, C-14, C-21 with further oxidation at C-1 and C-7 were observed with C. blakesleeana, N. hiratsukae biotransformation provided C-7 and C-12 hydroxylated compounds along with C-12 oxidized and C-1(O) glycosylated derivatives. The structures of the metabolites were elucidated by 1-D (1H, 13C and DEPT135) and 2-D NMR (COSY, HMBC, HMQC, NOESY, ROESY) as well as HR-MS analyses.TUBITAK (114Z958); Ege University Scientific Research Project 15ECZ01
Isolation, Characterization and In Silico Studies of Secondary Metabolites from the Whole Plant of Polygala inexpectata Peşmen & Erik
Polygala species are frequently used worldwide in the treatment of various diseases, such as inflammatory and autoimmune disorders as well as metabolic and neurodegenerative diseases, due to the large number of secondary metabolites they contain. The present study was performed on Polygala inexpectata, which is a narrow endemic species for the flora of Turkey, and resulted in the isolation of nine known compounds, 6,3′-disinapoyl-sucrose (1), 6-O-sinapoyl,3′-O-trimethoxy-cinnamoyl-sucrose (tenuifoliside C) (2), 3′-O-(O-methyl-feruloyl)-sucrose (3), 3′-O-(sinapoyl)-sucrose (4), 3′-O-trimethoxy-cinnamoyl-sucrose (glomeratose) (5), 3′-O-feruloyl-sucrose (sibiricose A5) (6), sinapyl alcohol 4-O-glucoside (syringin or eleutheroside B) (7), liriodendrin (8), and 7,4′-di-O-methylquercetin-3-O-β-rutinoside (ombuin 3-O-rutinoside or ombuoside) (9). The structures of the compounds were determined by the spectroscopic methods including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC), and HRMS. The isolated compounds were shown in an in silico setting to be accommodated well within the inhibitor-binding pockets of myeloperoxidase and inducible nitric oxide synthase and anchored mainly through hydrogen-bonding interactions and π-effects. It is therefore plausible to suggest that the previously established anti-inflammatory properties of some Polygala-derived phytochemicals may be due, in part, to the modulation of pro-inflammatory enzyme activities