48 research outputs found

    Differential Association of Gene Content Polymorphisms of Killer Cell Immunoglobulin-Like Receptors with Placental Malaria in HIV− and HIV+ Mothers

    Get PDF
    Pregnant women have abundant natural killer (NK) cells in their placenta, and NK cell function is regulated by polymorphisms of killer cell immunoglobulin-like receptors (KIRs). Previous studies report different roles of NK cells in the immune responses to placental malaria (PM) and human immunodeficiency virus (HIV-1) infections. Given these references, the aim of this study was to determine the association between KIR gene content polymorphism and PM infection in pregnant women of known HIV-1 status. Sixteen genes in the KIR family were analyzed in 688 pregnant Kenyan women. Gene content polymorphisms were assessed in relation to PM in HIV-1 negative and HIV-1 positive women, respectively. Results showed that in HIV-1 negative women, the presence of the individual genes KIR2DL1 and KIR2DL3 increased the odds of having PM, and the KIR2DL2/KIR2DL2 homozygotes were associated with protection from PM. However, the reverse relationship was observed in HIV-1 positive women, where the presence of individual KIR2DL3 was associated with protection from PM, and KIR2DL2/KIR2DL2 homozygotes increased the odds for susceptibility to PM. Further analysis of the HIV-1 positive women stratified by CD4 counts showed that this reverse association between KIR genes and PM remained only in the individuals with high CD4 cell counts but not in those with low CD4 cell counts. Collectively, these results suggest that inhibitory KIR2DL2 and KIR2DL3, which are alleles of the same locus, play a role in the inverse effects on PM and PM/HIV co-infection and the effect of KIR genes on PM in HIV positive women is dependent on high CD4 cell counts. In addition, analysis of linkage disequilibrium (LD) of the PM relevant KIR genes showed strong LD in women without PM regardless of their HIV status while LD was broken in those with PM, indicating possible selection pressure by malaria infection on the KIR genes

    Genetic diversity of Plasmodium falciparum parasite by microsatellite markers after scale-up of insecticide-treated bed nets in western Kenya

    Get PDF
    Background: An initial study of genetic diversity of Plasmodium falciparum in Asembo, western Kenya showed that the parasite maintained overall genetic stability 5 years after insecticide-treated bed net (ITN) introduction in 1997. This study investigates further the genetic diversity of P. falciparum 10 years after initial ITN introduction in the same study area and compares this with two other neighbouring areas, where ITNs were introduced in 1998 (Gem) and 2004 (Karemo). Methods: From a cross-sectional survey conducted in 2007, 235 smear-positive blood samples collected from children ≤15-year-old in the original study area and two comparison areas were genotyped employing eight neutral microsatellites. Differences in multiple infections, allele frequency, parasite genetic diversity and parasite population structure between the three areas were assessed. Further, molecular data reported previously (1996 and 2001) were compared to the 2007 results in the original study area Asembo. Results: Overall proportion of multiple infections (M A ) declined with time in the original study area Asembo (from 95.9 %-2001 to 87.7 %-2007). In the neighbouring areas, M A was lower in the site where ITNs were introduced in 1998 (Gem 83.7 %) compared to where they were introduced in 2004 (Karemo 96.7 %) in 2007. Overall mean allele count (M AC ~ 2.65) and overall unbiased heterozygosity (H e ~ 0.77) remained unchanged in 1996, 2001 and 2007 in Asembo and was the same level across the two neighbouring areas in 2007. Overall parasite population differentiation remained low over time and in the three areas at F ST < 0.04. Both pairwise and multilocus linkage disequilibrium showed limited to no significant association between alleles in Asembo (1996, 2001 and 2007) and between three areas. Conclusions: This study showed the P. falciparum high genetic diversity and parasite population resilience on samples collected 10 years apart and in different areas in western Kenya. The results highlight the need for long-term molecular monitoring after implementation and use of combined and intensive prevention and intervention measures in the region

    Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the <it>Plasmodium falciparum </it>merozoite surface protein 1 (MSP1<sub>19</sub>), inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP1<sub>19 </sub>had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP1<sub>19 </sub>would affect critical T-cell responses to epitopes in this antigen.</p> <p>Methods</p> <p>The cellular responses to wild-type MSP1<sub>19 </sub>and a panel of modified MSP1<sub>19 </sub>antigens were measured using an <it>in-vitro </it>assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to <it>Plasmodium falciparum </it>infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults.</p> <p>Results</p> <p>Interestingly, stimulation indices (SI) for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP1<sub>19</sub>. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu) had the highest stimulation index (SI up to 360) and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins.</p> <p>Conclusion</p> <p>This study suggests that specific MSP1<sub>19 </sub>variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.</p

    Genital tract microbiome dynamics are associated with time of Chlamydia infection in mice

    No full text
    Abstract We have previously shown that the time of Chlamydia infection was crucial in determining the chlamydial infectivity and pathogenesis. This study aims to determine whether the time of Chlamydia infection affects the genital tract microbiome. This study analyzed mice vaginal, uterine, and ovary/oviduct microbiome with and without Chlamydia infection. The mice were infected with Chlamydia at either 10:00 am (ZT3) or 10:00 pm (ZT15). The results showed that mice infected at ZT3 had higher Chlamydia infectivity than those infected at ZT15. There was more variation in the compositional complexity of the vaginal microbiome (alpha diversity) of mice infected at ZT3 than those mice infected at ZT15 throughout the infection within each treatment group, with both Shannon and Simpson diversity index values decreased over time. The analysis of samples collected four weeks post-infection showed that there were significant taxonomical differences (beta diversity) between different parts of the genital tract—vagina, uterus, and ovary/oviduct—and this difference was associated with the time of infection. Firmicutes and Proteobacteria were the most abundant phyla within the microbiome in all three genital tract regions for all the samples collected during this experiment. Additionally, Firmicutes was the dominant phylum in the uterine microbiome of ZT3 Chlamydia infected mice. The results show that the time of infection is associated with the microbial dynamics in the genital tract. And this association is more robust in the upper genital tract than in the vagina. This result implies that more emphasis should be placed on understanding the changes in the microbial dynamics of the upper genital tract over the course of infection

    MiR-378b Modulates Chlamydia-Induced Upper Genital Tract Pathology

    No full text
    Genital Chlamydia trachomatis infection causes severe reproductive pathologies such as salpingitis and pelvic inflammatory disease that can lead to tubal factor infertility. MicroRNAs (miRNAs) are evolutionarily conserved regulators of mammalian gene expression in development, immunity and pathophysiologic processes during inflammation and infection, including Chlamydia infection. Among the miRNAs involved in regulating host responses and pathologic outcome of Chlamydia infection, we have shown that miR-378b was significantly differentially expressed during primary infection and reinfection. In this study, we tested the hypothesis that miR-378b is involved in the pathological outcome of Chlamydia infection. We developed miR-378b knockout mice (miR-378b−/−) using Crispr/Cas and infected them along with their wild-type (WT) control with Chlamydia to compare the infectivity and reproductive pathologies. The results showed that miR-378b−/− mice were unable to clear the infection compared to WT mice; also, miR-378b−/− mice exhibited a relatively higher Chlamydia burden throughout the duration of infection. However, gross pathology results showed that miR-378b−/− mice had significantly reduced uterine dilatations and pathologic lesions after two infections compared to WT mice. In addition, the pregnancy and fertility rates for infected miR-378b−/− mice showed protection from Chlamydia-induced infertility with fertility rate that was comparable to uninfected WT mice. These results are intriguing as they suggest that miR-378b is important in regulating host immune responses that control Chlamydial replication and drive the inflammation that causes complications such as infertility. The finding has important implications for biomarkers of Chlamydial complications and targets for prevention of disease

    Association of maternal KIR gene content polymorphisms with reduction in perinatal transmission of HIV-1

    Get PDF
    The role of killer cell immunoglobulin-like receptors (KIRs) in the transmission of HIV-1 has not been extensively studied. Here, we investigated the association of KIR gene content polymorphisms with perinatal HIV-1 transmission. The KIR gene family comprising 16 genes was genotyped in 313 HIV-1 positive Kenyan mothers paired with their infants. Gene content polymorphisms were presented as presence of individual KIR genes, haplotypes, genotypes and KIR gene concordance. The genetic data were analyzed for associations with perinatal transmission of HIV. There was no association of infant KIR genes with perinatal HIV-1 transmission. After adjustment for gravidity, viral load, and CD4 cell count, there was evidence of an association between reduction in perinatal HIV-1 transmission and the maternal individual KIR genes KIR2DL2 (adjusted OR = 0.50; 95% CI: 0.24–1.02, P = 0.06), KIR2DL5 (adjusted OR = 0.47; 95% CI: 0.23–0.95, P = 0.04) and KIR2DS5 (adjusted OR = 0.39; 95% CI: 0.18–0.80, P = 0.01). Furthermore, these maternal KIR genes were only significantly associated with reduction in perinatal HIV transmission in women with CD4 cell count ≥ 350 cells/ μl and viral load <10000 copies/ml. Concordance analysis showed that when both mother and child had KIR2DS2, there was less likelihood of perinatal HIV-1 transmission (adjusted OR = 0.44; 95% CI: 0.20–0.96, P = 0.039). In conclusion, the maternal KIR genes KIR2DL2, KIR2DL5, KIR2DS5, and KIR2DS2 were associated with reduction of HIV-1 transmission from mother to child. Furthermore, maternal immune status is an important factor in the association of KIR with perinatal HIV transmission

    The Human Immune Response to Plasmodium falciparum Includes Both Antibodies That Inhibit Merozoite Surface Protein 1 Secondary Processing and Blocking Antibodies

    No full text
    Malaria merozoite surface protein 1 (MSP1) is cleaved in an essential step during erythrocyte invasion. The responses of children to natural malaria infection included antibodies that inhibit this cleavage and others that block the binding of these inhibitory antibodies. There was no correlation between the titer of the antibody to the 19-kDa fragment of MSP1 and its inhibitory activity. These findings have implications for the design of MSP1-based vaccines

    The immunoregulatory role of alpha enolase in dendritic cell function during Chlamydia infection

    No full text
    Abstract Background We have previously reported that interleukin-10 (IL-10) deficient dendritic cells (DCs) are potent antigen presenting cells that induced elevated protective immunity against Chlamydia. To further investigate the molecular and biochemical mechanism underlying the superior immunostimulatory property of IL-10 deficient DCs we performed proteomic analysis on protein profiles from Chlamydia-pulsed wild-type (WT) and IL-10−/− DCs to identify differentially expressed proteins with immunomodulatory properties. Results The results showed that alpha enolase (ENO1), a metabolic enzyme involved in the last step of glycolysis was significantly upregulated in Chlamydia-pulsed IL-10−/− DCs compared to WT DCs. We further studied the immunoregulatory role of ENO1 in DC function by generating ENO1 knockdown DCs, using lentiviral siRNA technology. We analyzed the effect of the ENO1 knockdown on DC functions after pulsing with Chlamydia. Pyruvate assay, transmission electron microscopy, flow cytometry, confocal microscopy, cytokine, T-cell activation and adoptive transfer assays were also used to study DC function. The results showed that ENO1 knockdown DCs had impaired maturation and activation, with significant decrease in intracellular pyruvate concentration as compared with the Chlamydia-pulsed WT DCs. Adoptive transfer of Chlamydia-pulsed ENO1 knockdown DCs were poorly immunogenic in vitro and in vivo, especially the ability to induce protective immunity against genital chlamydia infection. The marked remodeling of the mitochondrial morphology of Chlamydia-pulsed ENO1 knockdown DCs compared to the Chlamydia-pulsed WT DCs was associated with the dysregulation of translocase of the outer membrane (TOM) 20 and adenine nucleotide translocator (ANT) 1/2/3/4 that regulate mitochondrial permeability. The results suggest that an enhanced glycolysis is required for efficient antigen processing and presentation by DCs to induce a robust immune response. Conclusions The upregulation of ENO1 contributes to the superior immunostimulatory function of IL-10 deficient DCs. Our studies indicated that ENO1 deficiency causes the reduced production of pyruvate, which then contributes to a dysfunction in mitochondrial homeostasis that may affect DC survival, maturation and antigen presenting properties. Modulation of ENO1 thus provides a potentially effective strategy to boost DC function and promote immunity against infectious and non-infectious diseases

    The emerging role of ASC in dendritic cell metabolism during Chlamydia infection.

    No full text
    Chlamydia trachomatis is a bacterial agent that causes sexually transmitted infections worldwide. The regulatory functions of dendritic cells (DCs) play a major role in protective immunity against Chlamydia infections. Here, we investigated the role of ASC in DCs metabolism and the regulation of DCs activation and function during Chlamydia infection. Following Chlamydia stimulation, maturation and antigen presenting functions were impaired in ASC-/- DCs compared to wild type (WT) DCs, in addition, ASC deficiency induced a tolerant phenotype in Chlamydia stimulated DCs. Using real-time extracellular flux analysis, we showed that activation in Chlamydia stimulated WT DCs is associated with a metabolic change in which mitochondrial oxidative phosphorylation (OXPHOS) is inhibited and the cells become committed to utilizing glucose through aerobic glycolysis for differentiation and antigen presenting functions. However, in ASC-/- DCs Chlamydia-induced metabolic change was prevented and there was a significant effect on mitochondrial morphology. The mitochondria of Chlamydia stimulated ASC-/- DCs had disrupted cristae compared to the normal narrow pleomorphic cristae found in stimulated WT DCs. In conclusion, our results suggest that Chlamydia-mediated activation of DCs is associated with a metabolic transition in which OXPHOS is inhibited, thereby dedicating the DCs to aerobic glycolysis, while ASC deficiency disrupts DCs function by inhibiting the reprogramming of DCs metabolism within the mitochondria, from glycolysis to electron transport chain
    corecore