15 research outputs found

    Galanin neurons unite sleep homeostasis and α2-adrenergic sedation

    Get PDF
    Our urge to sleep increases with time spent awake, until sleep becomes inescapable. The sleep following sleep deprivation is longer and deeper, with an increased power of delta (0.5 - 4 Hz) oscillations, a phenomenon termed sleep homeostasis [1-4]. Although widely-expressed genes regulate sleep homeostasis [1, 4-10], and the process is tracked by somnogens and phosphorylation [1, 3, 7, 11-14], at the circuit level sleep homeostasis has remained mysterious. Previously we found that sedation induced with 2 adrenergic agonists (e.g. dexmedetomidine) and sleep homeostasis both depend on the preoptic (PO) hypothalamus [15, 16]. Dexmedetomidine, increasingly used for long-term sedation in intensive care units [17], induces a NREM-like sleep but with undesirable hypothermia [18, 19]. Within the PO, various neuronal subtypes (e.g. GABA/galanin and glutamate/NOS1) induce NREM sleep [20-22] and concomitant body cooling [21, 22]. This could be because NREM sleep’s restorative effects depend on lower body temperature [23, 24]. Here, we show that mice with lesioned PO galanin neurons have reduced sleep homeostasis: in the recovery sleep following sleep deprivation, there is a diminished increase in delta power, and the mice catch up little on lost sleep. Furthermore, dexmedetomidine cannot induce high-power delta oscillations or sustained hypothermia. Some hours after dexmedetomidine administration to wild-type mice there is a rebound in delta power when they enter normal NREM sleep, reminiscent of emergence from torpor. This delta rebound is reduced in mice lacking PO galanin neurons. Thus, sleep homeostasis and dexmedetomidine-induced sedation require PO galanin neurons and likely share common mechanisms

    Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness

    No full text
    Acute chemogenetic inhibition of histamine (HA) neurons in adult mice induced nonrapid eye movement (NREM) sleep with an increased delta power. By contrast, selective genetic lesioning of HA neurons with caspase in adult mice exhibited a normal sleep–wake cycle overall, except at the diurnal start of the lights-off period, when they remained sleepier. The amount of time spent in NREM sleep and in the wake state in mice with lesioned HA neurons was unchanged over 24 hr, but the sleep–wake cycle was more fragmented. Both the delayed increase in wakefulness at the start of the night and the sleep–wake fragmentation are similar phenotypes to histidine decarboxylase knockout mice, which cannot synthesize HA. Chronic loss of HA neurons did not affect sleep homeostasis after sleep deprivation. However, the chronic loss of HA neurons or chemogenetic inhibition of HA neurons did notably reduce the ability of the wake-promoting compound modafinil to sustain wakefulness. Thus, part of modafinil’s wake-promoting actions arise through the HA system

    Sleep deprivation triggers somatostatin neurons in prefrontal cortex to initiate nesting and sleep via the preoptic and lateral hypothalamus

    No full text
    Animals undertake specific behaviors before sleep. Little is known about whether these innate behaviors, such as nest building, are actually an intrinsic part of the sleep-inducing circuitry. We found, using activity-tagging genetics, that mouse prefrontal cortex (PFC) somatostatin/GABAergic (SOM/GABA) neurons, which become activated during sleep deprivation, induce nest building when opto-activated. These tagged neurons induce sustained global NREM sleep if their activation is prolonged metabotropically. Sleep-deprivation-tagged PFC SOM/GABA neurons have long-range projections to the lateral preoptic (LPO) and lateral hypothalamus (LH). Local activation of tagged PFC SOM/GABA terminals in LPO and the LH induced nesting and NREM sleep respectively. Our findings provide a circuit link for how the PFC responds to sleep deprivation by coordinating sleep preparatory behavior and subsequent sleep

    A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus

    No full text
    Mammals, including humans, prepare for sleep by nesting and curling up, creating microclimates of skin warmth. To address if external warmth induces sleep through defined circuitry, we used c-Fos-dependent activity-tagging, which captures populations of activated cells, and allows them to be reactivated to test their physiological role. External warming tagged two principal groups of neurons in the MnPO/MPO hypothalamic area. GABA neurons located mainly in MPO produced NREM sleep but no body temperature decrease. Nitrergic/glutamatergic neurons in MnPO /MPO induced both body cooling and NREM sleep. This circuitry explains how skin warming induces sleep, and why the maximal rate of core body cooling positively correlates with sleep onset. Thus, the pathways that promote NREM-sleep, reduced energy expenditure, and body cooling are inextricably linked, commanded by the same neurons. This implies that one function of NREM sleep is to lower brain temperature and/or conserve energy

    Somatostatin neurons in prefrontal cortex initiate sleep preparatory behavior and sleep via the preoptic and lateral hypothalamus

    No full text
    The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, & gamma;-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.ISSN:1097-6256ISSN:1546-172

    GABA and glutamate neurons in the VTA regulate sleep and wakefulness

    No full text
    We screened for novel circuits in the mouse brain that promote wakefulness. Chemogenetic activation experiments and electroencephalogram recordings pointed to glutamatergic/nitrergic (NOS1) and GABAergic neurons in the ventral tegmental area (VTA). Activating glutamatergic/NOS1 neurons, which were wake- and rapid eye movement (REM) sleep-active, produced wakefulness through projections to the nucleus accumbens and the lateral hypothalamus. Lesioning the glutamate cells impaired the consolidation of wakefulness. By contrast, activation of GABAergic VTA neurons elicited long-lasting non-rapid-eye-movement-like sleep resembling sedation. Lesioning these neurons produced an increase in wakefulness that persisted for at least 4 months. Surprisingly, these VTA GABAergic neurons were wake- and REM sleep-active. We suggest that GABAergic VTA neurons may limit wakefulness by inhibiting the arousal-promoting VTA glutamatergic and/or dopaminergic neurons and through projections to the lateral hypothalamus. Thus, in addition to its contribution to goal- and reward-directed behaviors, the VTA has a role in regulating sleep and wakefulness

    Wakefulness Is Governed by GABA and Histamine Cotransmission

    Get PDF
    Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of "histaminergic" axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl(-) currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas

    Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists

    Full text link
    Do sedatives engage natural sleep pathways? It is usually assumed that anesthetic-induced sedation and loss of righting reflex (LORR) arise by influencing the same circuitry to lesser or greater extents. For the α2 adrenergic receptor agonist dexmedetomidine, we found that sedation and LORR were in fact distinct states, requiring different brain areas: the preoptic hypothalamic area and locus coeruleus (LC), respectively. Selective knockdown of α2A adrenergic receptors from the LC abolished dexmedetomidine-induced LORR, but not sedation. Instead, we found that dexmedetomidine-induced sedation resembled the deep recovery sleep that follows sleep deprivation. We used TetTag pharmacogenetics in mice to functionally mark neurons activated in the preoptic hypothalamus during dexmedetomidine-induced sedation or recovery sleep. The neuronal ensembles could then be selectively reactivated. In both cases, non-rapid eye movement sleep, with the accompanying drop in body temperature, was recapitulated. Thus, α2 adrenergic receptor-induced sedation and recovery sleep share hypothalamic circuitry sufficient for producing these behavioral states

    A specific circuit in the midbrain detects stress and induces restorative sleep

    No full text
    In mice, social defeat stress (SDS), an ethological model for psychosocial stress, induces sleep. Such sleep could enable resilience, but how stress promotes sleep is unclear. Activity - dependent tagging revealed a subset of ventral tegmental area GABA-somatostatin (VTAVgat-Sst) cells that sense stress and drive NREM and REM sleep via the lateral hypothalamus, and also inhibit corticotropin-releasing factor (CRF) release in the paraventricular hypothalamus. Transient stress enhances the activity of VTA Vgat-Sst cells for several hours, allowing them to exert their sleep effects persistently. Lesioning of VTAVgat-Sst cells abolished SDS-induced sleep; without it, anxiety and corticosterone levels remained elevated after stress. Thus, a specific circuit allows animals to restore mental and body functions via sleeping, potentially providing a refined route for treating anxiety disorders
    corecore