117 research outputs found
A linear-time algorithm for finding a complete graph minor in a dense graph
Let g(t) be the minimum number such that every graph G with average degree
d(G) \geq g(t) contains a K_{t}-minor. Such a function is known to exist, as
originally shown by Mader. Kostochka and Thomason independently proved that
g(t) \in \Theta(t*sqrt{log t}). This article shows that for all fixed \epsilon
> 0 and fixed sufficiently large t \geq t(\epsilon), if d(G) \geq
(2+\epsilon)g(t) then we can find this K_{t}-minor in linear time. This
improves a previous result by Reed and Wood who gave a linear-time algorithm
when d(G) \geq 2^{t-2}.Comment: 6 pages, 0 figures; Clarification added in several places, no change
to arguments or result
Quantum Algorithms for Matrix Products over Semirings
In this paper we construct quantum algorithms for matrix products over
several algebraic structures called semirings, including the (max,min)-matrix
product, the distance matrix product and the Boolean matrix product. In
particular, we obtain the following results.
We construct a quantum algorithm computing the product of two n x n matrices
over the (max,min) semiring with time complexity O(n^{2.473}). In comparison,
the best known classical algorithm for the same problem, by Duan and Pettie,
has complexity O(n^{2.687}). As an application, we obtain a O(n^{2.473})-time
quantum algorithm for computing the all-pairs bottleneck paths of a graph with
n vertices, while classically the best upper bound for this task is
O(n^{2.687}), again by Duan and Pettie.
We construct a quantum algorithm computing the L most significant bits of
each entry of the distance product of two n x n matrices in time O(2^{0.64L}
n^{2.46}). In comparison, prior to the present work, the best known classical
algorithm for the same problem, by Vassilevska and Williams and Yuster, had
complexity O(2^{L}n^{2.69}). Our techniques lead to further improvements for
classical algorithms as well, reducing the classical complexity to
O(2^{0.96L}n^{2.69}), which gives a sublinear dependency on 2^L.
The above two algorithms are the first quantum algorithms that perform better
than the -time straightforward quantum algorithm based on
quantum search for matrix multiplication over these semirings. We also consider
the Boolean semiring, and construct a quantum algorithm computing the product
of two n x n Boolean matrices that outperforms the best known classical
algorithms for sparse matrices. For instance, if the input matrices have
O(n^{1.686...}) non-zero entries, then our algorithm has time complexity
O(n^{2.277}), while the best classical algorithm has complexity O(n^{2.373}).Comment: 19 page
Network-based dissolution
We introduce a novel graph-theoretic dissolution model which applies to a number of redistribution scenarios such as gerrymandering or work economization. The central aspect of our model is to delete some vertices and redistribute their "load" to neighboring vertices in a completely balanced way. We investigate how the underlying graph structure, the pre-knowledge about which vertices to delete, and the relation between old and new "vertex load" influence the computational complexity of the underlying easy-to-describe graph problems, thereby identifying both tractable and intractable cases
Streaming algorithms for 2-coloring uniform hypergraphs
We consider the problem of two-coloring n-uniform hypergraphs. It is known that any such hypergraph with at most 1/10√n/ln n 2n hyperedges can be two-colored [7]. In fact, there is an efficient (requiring polynomial time in the size of the input) randomized algorithm that produces such a coloring. As stated [7], this algorithm requires random access to the hyperedge set of the input hypergraph. In this paper, we show that a variant of this algorithm can be implemented in the streaming model (with just one pass over the input), using space O(|V|B), where V is the vertex set of the hypergraph and each vertex is represented by B bits. (Note that the number of hyperedges in the hypergraph can be superpolynomial in |V|, and it is not feasible to store the entire hypergraph in memory.) We also consider the question of the minimum number of hyperedges in non-two-colorable n-uniform hypergraphs. Erdos showed that there exist non-2-colorable n-uniform hypegraphs with O(n2 2n) hyperedges and Θ(n2) vertices. We show that the choice Θ(n2) for the number of vertices in Erdös's construction is crucial: any hypergraph with at most 2n2/t vertices and 2nexp(t/8) hyperedges is 2-colorable. (We present a simple randomized streaming algorithm to construct the two-coloring.) Thus, for example, if the number of vertices is at most n1.5, then any non-2-colorable hypergraph must have at least 2n exp(√n/8) » n22n hyperedges. We observe that the exponential dependence on t in our result is optimal up to constant factors
Parallel Sparse Matrix-Matrix Multiplication and Indexing: Implementation and Experiments
Generalized sparse matrix-matrix multiplication (or SpGEMM) is a key
primitive for many high performance graph algorithms as well as for some linear
solvers, such as algebraic multigrid. Here we show that SpGEMM also yields
efficient algorithms for general sparse-matrix indexing in distributed memory,
provided that the underlying SpGEMM implementation is sufficiently flexible and
scalable. We demonstrate that our parallel SpGEMM methods, which use
two-dimensional block data distributions with serial hypersparse kernels, are
indeed highly flexible, scalable, and memory-efficient in the general case.
This algorithm is the first to yield increasing speedup on an unbounded number
of processors; our experiments show scaling up to thousands of processors in a
variety of test scenarios
A complete classification of epistatic two-locus models
Background: The study of epistasis is of great importance in statistical genetics in fields such as linkage and association analysis and QTL mapping. In an effort to classify the types of epistasis in the case of two biallelic loci Li and Reich listed and described all models in the simplest case of 0/ 1 penetrance values. However, they left open the problem of finding a classification of two-locus models with continuous penetrance values. Results: We provide a complete classification of biallelic two-locus models. In addition to solving the classification problem for dichotomous trait disease models, our results apply to any instance where real numbers are assigned to genotypes, and provide a complete framework for studying epistasis in QTL data. Our approach is geometric and we show that there are 387 distinct types of two-locus models, which can be reduced to 69 when symmetry between loci and alleles is accounted for. The model types are defined by 86 circuits, which are linear combinations of genotype values, each of which measures a fundamental unit of interaction. Conclusion: The circuits provide information on epistasis beyond that contained in the additive × additive, additive × dominance, and dominance × dominance interaction terms. We discuss th
- …