7 research outputs found
Recommended from our members
Wind Resource Assessment for Utility-Scale Clean Energy Project: The Case of Sao Vicente Island
Accurate wind resource assessment is of high importance in wind power project development. This thesis estimates the annual energy yield and emission reduction potential for a grid connected 5.95 MW wind power plant at the island of Sao Vicente in Cape Verde. Wind speed data from Sao Vicente wind farm is processed and analyzed in R (Statistical software). The maximum annual wind energy potential at the site is 53,470.2 MWh, but analysis shows that the turbine can harness an estimated 14,185 MWh per annum. The estimated annual greenhouse gas (GHG) emissions displacement is 10,071 tonnes of CO2. In monetary terms, the GHG displacement is worth € 60,428 per annum based on the European trading system of € 6 per tonne CO2. The estimated investment cost of the 5.95MW wind power project is € 15.5 million against the estimated investment cost of similar project in Germany of € 10 million based on the investment benchmark of 1,800/kW. The difference in investment cost between Cape Verde and Germany is attributed to additional cost of breaking the complex terrain barriers to the good wind site in Sao Vicente; importation of turbine and equipment parts; foreign consultancy services and manpower; pre-feasibility and feasibility studies to identify suitable sites. With the prevailing electricity tariff of € 0.28 per kWh in Cape Verde, it was estimated that the wind power project will break-even within 4 years with or without carbon credit. This indicates that the project is financially viable. In the context of Nigeria’s coastal area of Lagos, wind resource potential lies within Class 1 (<5 m/s) at a hub height of 74 metres. This indicates that wind power project could be realized using a turbine with a cut-in speed below 3 m/s in best case scenario. The implication is that more numbers of small wind turbines will be needed to reach utility-scale
Recommended from our members
Farm level power curves for wind integration studies: considering turbine wake and complex terrain effects
The increasing penetration of variable energy vector such as wind comes with enormous challenges. To surmount this, one of the important tasks in wind integration studies is the accurate forecasts of energy yield both in long and short terms to ensure the security of network and supply, and ultimately a penalty-free electricity trading. These activities require accurate knowledge of local wind climate at micro-scale level. However, microscale-quality data are seldom available and on-site wind measurement takes time. Wind dataset from met stations are usually collected at 10 metres height which is quite poor to be extrapolated to wind farm site and to boundary layer. Regional wind dataset on the other hand is collected at a resolution that is too coarse to capture short-scaled and short-lived local effects such as terrain and/or wake-induced turbulence.This work combines an industry-standard microscale model by WindSim with WRF mesoscale model at 3 km resolution to obtain a downscaled, terrain- and wake-modified dataset with 300 metres resolution suitable for local wind climate predictions. The coupled model uses eleven years WRF dataset (2000-2010) as initials and inlet boundary conditions (BCs), fixed pressure as the top BC, and the site’s digital terrain model (DTM) dataset as the bottom BCs to drive CDF simulation in WindSim. The study site is 7kmx7km covering the entire Braes of Doune wind farm in Scotland. The refined dataset is probably the first attempt to downscale the recently developed regional WRF mesoscale model for a specific site in the UK by taking cognizance of terrain and wake effects. The results from the coupled model are verified in two steps- first, against the actual production data from ELEXON, and then against the previous power curve derived by fitting warranted power curve to the WRF dataset. To investigate the directional dependecy of power curves, a set of representative power curves are derived for 12 sectors at 30° interval. In addition, the vertical and directional profiles of wind speed, inflow angle, wind shear/exponent, turbulent kinetic energy, and turbulence intensity are derived for the study site.The fidelity of the downscaled dataset to model the actual production pattern is demonstrated, and a set of normalized directional power curves and vertical profiles of micro-scale variables are predicted as representative of the wind farm site and could be used to predict power output, tendencies for turbine loading, and wind farm feasibility studies specific to the site
How climate policies can translate to tangible change: Evidence from eleven low- and lower-middle income countries
Formally adopting climate change mitigation policies does not necessarily translate to tangible change on the ground. Here, we analyse 31 semi-structured interviews with climate policy government officials and consultants from 11 low-income and lower-middle income countries (LMICs) as well as the respective climate policy context, and find high average degrees of perceived discrepancies between formally adopted climate change mitigation policies and their actual implementation. Our results suggest that for our LMIC sample, both the global political process to limit climate change and domestic environmental threats have been key to drive the formal adoption of climate change mitigation policies, but have had limited effect on implementation. By contrast, momentum for implementation of climate change mitigation initiatives and projects on the ground emerges where climate policies are firmly embedded within economic and social development policies, the economy and society are comparably well-positioned to embrace the associated change, and where they have been governed by cross-ministerial institutions capable of implementing wider climate-compatible development pathways. Thus, to help translate climate policy into action, national LMIC governments and the international community need to find context-specific ways to successfully integrate climate with economic and social development policies, identify and build on feasible opportunities and competitive advantages through which the local economy can benefit from green growth, build adequate social capital, and actively create institutional spaces and processes for well-equipped and meaningful cross-ministerial co-beneift governance. The importance of unlocking co-benefits for implementing climate policies underlines both the urgency with which the international community needs to increase finance for LMICs for climate change mitigation, as well as the associated development opportunities
How climate policies can translate to tangible change: Evidence from eleven low- and lower-middle income countries
Formally adopting climate change mitigation policies does not necessarily translate to tangible change on the ground. Here, we analyse 31 semi-structured interviews with climate policy government officials and consultants from 11 low-income and lower-middle income countries (LMICs) as well as the respective climate policy context, and find high average degrees of perceived discrepancies between formally adopted climate change mitigation policies and their actual implementation. Our results suggest that for our LMIC sample, both the global political process to limit climate change and domestic environmental threats have been key to drive the formal adoption of climate change mitigation policies, but have had limited effect on implementation. By contrast, momentum for implementation of climate change mitigation initiatives and projects on the ground emerges where climate policies are firmly embedded within economic and social development policies, the economy and society are comparably well-positioned to embrace the associated change, and where they have been governed by cross-ministerial institutions capable of implementing wider climate-compatible development pathways. Thus, to help translate climate policy into action, national LMIC governments and the international community need to find context-specific ways to successfully integrate climate with economic and social development policies, identify and build on feasible opportunities and competitive advantages through which the local economy can benefit from green growth, build adequate social capital, and actively create institutional spaces and processes for well-equipped and meaningful cross-ministerial co-benefit governance. The importance of unlocking co-benefits for implementing climate policies underlines both the urgency with which the international community needs to increase finance for LMICs for climate change mitigation, as well as the associated development opportunities
Recommended from our members
A collective approach to reducing carbon dioxide emission: A case study of four University of Lagos Halls of residence
A major focus of existing literature on energy conservation is the modelling and quantification of energy savings and the corresponding carbon dioxide emissions from lightings. While many studies have established theoretical frameworks concerning these issues, very little documentation exists relating to energy savings and emission levels in students’ hostels. This paper considers the lighting efficiency improvement of four University of Lagos halls of residence for the purpose of quantifying energy saving and the minimization of carbon dioxide that can be made. Compact fluorescent lamps are considered alternatives to the current primary usage of conventional fluorescent and incandescent bulbs. The existing electricity consumption data obtained from energy audit are used in combination with conversion factors to estimate the annual CO2 contributed to the atmosphere by lighting in each of the buildings. The result of the study shows that over 45% reduction in carbon dioxide emission can be achieved. There is a lot individuals can do to reduce the emissions, for example, using energy saving appliances, turning off appliances when not in use, less use of fossil fuels, are simple measures that can be adopted to reduce annual carbon footprint, improve economic growth, enhance environment, health and save the planet
Africa needs context-relevant evidence to shape its clean energy future
Aligning development and climate goals means Africa’s energy systems will be based on clean energy technologies in the long term, but pathways to get there are uncertain and variable across countries. Although current debates about natural gas and renewables in Africa are heated, they largely ignore the substantial context specificity of the starting points, development objectives and uncertainties of each African country’s energy system trajectory. Here we—an interdisciplinary and majority African group of authors—highlight that each country faces a distinct solution space and set of uncertainties for using renewables or fossil fuels to meet its development objectives. For example, Ethiopia is headed for an accelerated green-growth pathway, but Mozambique is at a crossroads of natural gas expansion with implicit large-scale technological, economic, financial and social risks and uncertainties. We provide geopolitical, policy, finance and research recommendations to create firm country-specific evidence to identify adequate energy system pathways for development and to enable their implementation