11 research outputs found

    Effect of Environmental Degradation on Mechanical Properties of Kenaf/Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite

    Get PDF
    The main objective of this research is to investigate the effect of environmental degradation on the mechanical properties of kenaf/PET fiber reinforced POM hybrid composite. Kenaf and PET fibers were selected as reinforcements because of their good mechanical properties and resistance to photodegradation. The test samples were produced by compression molding. The samples were exposed to moisture, water spray, and ultraviolet penetration in an accelerated weathering chamber for 672 hours. The tensile strength of the long fiber POM/kenaf (80/20) composite dropped by 50% from 127.8 to 64.8 MPa while that of the hybrid composite dropped by only 2% from 73.8 to 72.5 MPa. This suggests that the hybrid composite had higher resistance to tensile strength than the POM/kenaf composite. Similarly, the results of flexural and impact strengths also revealed that the hybrid composite showed less degradation compared to the kenaf fiber composite. The results of the investigation revealed that the hybrid composite had better retention of mechanical properties than that of the kenaf fiber composites and may be suitable for outdoor application in the automotive industry

    Extraction of Continuous Fiber from Mengkuang Leaves: The Influence of Process Parameters during Alkaline Treatment

    No full text
    Currently, natural cellulose fiber composite is a promising prospect in the composite world. However, achieving uniform strength in natural fiber composite is a challenge due to limited fiber length and its random orientation in the composite. Thus, the focus of this paper was to obtain a continuous cellulose fiber from mengkuang leaves using chemical extraction process. The chemical extraction involved alkaline treatment of the mengkuang leave followed by bleaching. This paper focused on extraction using sodium hydroxide (NaOH) and its process parameters. The process parameters of the extraction were varied in terms of concentration of NaOH solution and also the soaking time. The texture and structure of the chemically purified continuous cellulose fiber were observed by visual inspection. Detailed microstructural analysis was carried out using Field Emission Scanning Electron Microscopy (FESEM) while chemical composition analysis in term of cellulose percentage was conducted using Technical Association of the Pulp and Paper Industry (TAPPI); TAPPI T203. Preliminary results showed that increment in cellulose percentage when the concentration of NaOH and soaking time were increased

    Extraction of Continuous Fiber from Mengkuang Leaves: The Influence of Process Parameters during Alkaline Treatment

    No full text
    Currently, natural cellulose fiber composite is a promising prospect in the composite world. However, achieving uniform strength in natural fiber composite is a challenge due to limited fiber length and its random orientation in the composite. Thus, the focus of this paper was to obtain a continuous cellulose fiber from mengkuang leaves using chemical extraction process. The chemical extraction involved alkaline treatment of the mengkuang leave followed by bleaching. This paper focused on extraction using sodium hydroxide (NaOH) and its process parameters. The process parameters of the extraction were varied in terms of concentration of NaOH solution and also the soaking time. The texture and structure of the chemically purified continuous cellulose fiber were observed by visual inspection. Detailed microstructural analysis was carried out using Field Emission Scanning Electron Microscopy (FESEM) while chemical composition analysis in term of cellulose percentage was conducted using Technical Association of the Pulp and Paper Industry (TAPPI); TAPPI T203. Preliminary results showed that increment in cellulose percentage when the concentration of NaOH and soaking time were increased

    Effect of Grain Boundary Formation in Microstructural Changes in IN 738 Service Exposed Turbine Blade

    No full text
    Microstructural changes on a Nickel based superalloy service exposed gas turbine blade after 52,000 hours at 720°C temperature was investigated. The study examines the grain boundary growth sizes; the changes with respect to gamma prime (γi) precipitate and phase distributions that occurred during operation. In order to observe the changes some different portions of the turbine blade undergone scanning electron microscope (SEM) to determine the grain size measurement and the EDX was used to evaluate the elemental analysis. The grain growths were discrete in formation along the grain boundary (GB) and little difference in the size of (γi) precipitates existed in different locations. The gradual transition of grain boundary-carbide morphology from the original fine discrete to fine semi-continuous, continuous film-like and finally coarse is observed in the specimens. The changes mostly evolves around two distinct phases which is from the solid to the equilibrium (sigma coarse phase) and then back to the solid (hardening gamma prime precipitate) phase. The grain size of (γi) precipitate varies throughout the surface of the turbine blade and there is a significant difference between the leading and trailing edge. The microstructural changes on the serviced blade can be interpreted to indicate that no obvious microstructural degradation and phase deformation occurred during exposure time

    Effect of Grain Boundary Formation in Microstructural Changes in IN 738 Service Exposed Turbine Blade

    No full text
    Microstructural changes on a Nickel based superalloy service exposed gas turbine blade after 52,000 hours at 720°C temperature was investigated. The study examines the grain boundary growth sizes; the changes with respect to gamma prime (γi) precipitate and phase distributions that occurred during operation. In order to observe the changes some different portions of the turbine blade undergone scanning electron microscope (SEM) to determine the grain size measurement and the EDX was used to evaluate the elemental analysis. The grain growths were discrete in formation along the grain boundary (GB) and little difference in the size of (γi) precipitates existed in different locations. The gradual transition of grain boundary-carbide morphology from the original fine discrete to fine semi-continuous, continuous film-like and finally coarse is observed in the specimens. The changes mostly evolves around two distinct phases which is from the solid to the equilibrium (sigma coarse phase) and then back to the solid (hardening gamma prime precipitate) phase. The grain size of (γi) precipitate varies throughout the surface of the turbine blade and there is a significant difference between the leading and trailing edge. The microstructural changes on the serviced blade can be interpreted to indicate that no obvious microstructural degradation and phase deformation occurred during exposure time

    Mechanical Properties and Failure Mechanisms of Novel Resin-infused Thermoplastic and Conventional Thermoset 3D Fabric Composites

    Get PDF
    This paper presents an extensive comparison of the mechanical properties and failure mechanisms of a recently developed thermoplastic (Elium ®) 3D fabric-reinforced composite (3D-FRC) with the conventional thermoset (epoxy) 3D-FRC. Experiments involved tensile tests, compression tests, V-notch shear tests, and short beam shear tests for specimens produced through the vacuum-assisted resin infusion process in each case. These tests were used for the determination of in-plane elastic constants, failure strengths and for investigating the failure mechanisms. A micro-mechanical model validated against these experiments was used to predict the remaining orthotropic elastic constants. This work enhances our understanding of the mechanics of infusible thermoplastic 3D-FRC as a new class of emerging materials and provides useful data which substantiates that this unconventional thermoplastic resin is also easier to recycle, uses similar manufacturing processes and can be a suitable replacement for conventional thermoset resins.Universiti Teknologi PETRONAS, Malaysia, financial support under Yayasan Universiti Teknologi PETRONAS, grant number 015LC0-19

    Experimental Preparation and Numerical Simulation of High Thermal Conductive Cu/CNTs Nanocomposites

    No full text
    Due to the rapid growth of high performance electronics devices accompanied by overheating problem, heat dissipater nanocomposites material having ultra-high thermal conductivity and low coefficient of thermal expansion was proposed. In this work, a nanocomposite material made of copper (Cu) reinforced by multi-walled carbon nanotubes (CNTs) up to 10 vol. % was prepared and their thermal behaviour was measured experimentally and evaluated using numerical simulation. In order to numerically predict the thermal behaviour of Cu/CNTs composites, three different prediction methods were performed. The results showed that rules of mixture method records the highest thermal conductivity for all predicted composites. In contrast, the prediction model which takes into account the influence of the interface thermal resistance between CNTs and copper particles, has shown the lowest thermal conductivity which considered as the closest results to the experimental measurement. The experimentally measured thermal conductivities showed remarkable increase after adding 5 vol.% CNTs and higher than the thermal conductivities predicted via Nan models, indicating that the improved fabrication technique of powder injection molding that has been used to produced Cu/CNTs nanocomposites has overcome the challenges assumed in the mathematical models

    Determination of Remaining Useful Life of Gas Turbine Blade

    No full text
    The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT) under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO) 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error

    Determination of Remaining Useful Life of Gas Turbine Blade

    No full text
    The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT) under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO) 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error
    corecore