39 research outputs found

    Association Between VDR FokI Polymorphism and Intervertebral Disk Degeneration

    Get PDF
    AbstractIntervertebral disk degeneration (IDD) is strongly associated with genetic predisposition and environmental susceptibility. Several studies been conducted to investigate the potential association between IDD and FokI polymorphism located in the gene encoding the vitamin D receptor (VDR), and inconsistent conclusions had been reached among different ethnic populations. In order to assess the association between the FokI polymorphism and the risk of IDD, we performed a comprehensive and systematic meta-analysis. Candidate articles were retrieved from PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), and China Biology Medical (CBM) with strict inclusion criteria in January 2015. Among the 54 articles that were retrieved, only eight studies met the inclusion criteria. The pooled data analysis based on allele contrast, homozygote, heterozygote, dominant, and recessive models revealed no significant correlation between the FokI polymorphism and the risk of IDD. However, when stratified by ethnicity, significant associations were detected for Hispanics based on allele contrast (OR=1.395, 95% CI=1.059–1.836, P=0.018), homozygote (OR=1.849, 95% CI=1.001–3.416, P=0.049), heterozygote (OR=1.254, 95% CI=1.049–1.498, P=0.013), and dominant (OR=1.742, 95% CI=1.174–2.583, P=0.006) models, and for Asians using the dominant model (OR=1.293, 95% CI=1.025–1.632, P=0.030), whereas there is no significant association detected for Caucasians. In conclusion, FokI polymorphism is not generally associated with IDD, but there is increased risk for IDD in Hispanics and Asians carrying FokI allele T

    Time-Varying Modal Parameters Identification by Subspace Tracking Algorithm and Its Validation Method

    Get PDF
    This article presents a time-varying modal parameter identification method based on the novel information criterion (NIC) algorithm and a post-process method for time-varying modal parameter estimation. In the practical application of the time-varying modal parameter identification algorithm, the identified results contain both real modal parameters and aberrant ones caused by the measurement noise. In order to improve the quality of the identified results as well as sifting and validating the real modal parameters, a post-process procedure based on density-based spatial clustering of applications with noise (DBSCAN) algorithm is introduced. The efficiency of the proposed approach is first verified through a numerical simulation of a cantilever Euler-Bernoulli beam with a time-varying mass. Then the proposed approach is experimentally demonstrated by composite sandwich structure in a time-varying high temperature environment. The identified results illustrate that the proposed approach can obtain real modal frequencies in low signal-to-noise ratio (SNR) scenarios

    Knockdown of Akt Sensitizes Osteosarcoma Cells to Apoptosis Induced by Cisplatin Treatment

    Get PDF
    Akt plays an important role in the inhibition of apoptosis induced by chemotherapy and other stimuli. We therefore investigated if knockdown of Akt2 promoted drug-induced apoptosis in cultured osteosarcoma cells in vitro. SAOS-2 cells were transfected with Akt2 siRNA. The sensitivity of the transformed cell line to the chemotherapeutic drug cisplatin was assessed. Reduced expression of Akt2 did not directly inhibit the growth rate of the transfected cells; however, it significantly increased their sensitivity to cisplatin. Knockdown of Akt2, together with cisplatin treatment, promoted the expression of p53 up-regulated modulator of apoptosis (PUMA). It is possible that the augmentation of cisplatin cytotoxicity may be mediated by PUMA activation. The results of this study suggest that knockdown of Akt2 expression may have therapeutic applications in enhancing the efficacy of chemotherapy in patients with osteosarcoma

    Modeling Particle Gel Propagation in Porous Media

    No full text
    Gel treatments are a proven cost-effective method to reduce excess water production and improve sweep efficiency in waterflood reservoirs. A newer trend in gel treatments uses particle gel (PG) to overcome some distinct drawbacks inherent in in-situ gelation systems. In this paper, we present a conceptual numerical model, based on laboratory tests and analyses, to simulate PG propagation through porous rock. In particular, we use a continuum modeling approach to simulate PG movement and its impact on isothermal oil and water flow and displacement processes. In this conceptual model, the PG is treated as one additional component to the water phase. This simplified treatment is based on the following physical considerations: (1) PG is mobilized only within the aqueous phase by advection in reservoirs; (2) PG, once retained in the porous media, will occupy pore space in pore bodies or pore throats and therefore reduce the permeability to bypassing water or oil; and (3) PG mobilization may not occur through pores or pore throats until some thresholds in pressure and/or pressure gradients are achieved and these threshold conditions are described by analogy to non-Newtonian fluid or non-Darcy flow in porous media, i.e., by a modified Darcy\u27s law. The model is able to predict and evaluate the effects of PG as a conformance control agent to improve oil production and control excess water production

    Investigating Low-Salinity Waterflooding Recovery Mechanisms in Sandstone Reservoirs

    No full text
    Numerous core-flooding experiments have shown that Low-Salinity Water Flooding (LSWF) could improve oil recovery in sandstone reservoirs. However, LSWF recovery mechanisms remain highly contentious primarily because of the absence of crucial boundary conditions. The objective of this paper is to conduct a parametric study using statistical analysis and simulation to measure the sensitivities of LSWF recovery mechanisms in sandstone reservoirs. The summary of 411 coreflooding experiments discussed in this paper highlights the extent and consistency in reporting boundary conditions, which has two implications for statistical analysis: (1) Even though statistical correlations of the residual oil saturation to chlorite (0.7891) and kaolinite (0.4399) contents, as well as the wettability index (0.3890), are comparably strong, the majority of dataset entries are missing, and a prediction model cannot be generated; (2) If a prediction model is generated without clay content values and a wettability index, even though LSWF emphasizes wettability modification by virtue of oil aging time and the strong influence of brine cation and divalent ion concentrations on S or, the prediction model\u27s regression curve and confidence level are poor. Reservoir simulations conducted to examine LSWF recovery sensitivities conclude that LSWF recovery mechanisms are governed based on the initial and final wetting states. In strong water-wet conditions, the increase in oil relative permeability is the underlying recovery mechanism. In weak water-wet conditions, the incremental recovery of LSWF is driven by low capillary pressures. In weak oil-wet conditions, the primary LSWF recovery mechanism is the increase in oil relative permeability, and the secondary mechanism is the change of the non-wetting phase to oil. In strong oil-wet conditions, the underlining LSWF recovery mechanism is the increase in oil relative permeability. In all cases, an appreciable decrease in interfacial tension (IFT) is realized at the breakthrough recovery however that is rapidly overshadowed by the increase in oil relative permeability and decrease in contact angle

    Investigating Low Salinity Waterflooding Recovery Mechanisms in Carbonate Reservoirs

    No full text
    Manipulating the injected brine composition can favorably alter the reservoir wetting state; this hypothesis has been validated in sandstone reservoirs by several scientists. A total of 214 coreflooding experiments were conducted to evaluate low salinity waterflooding (LSWF) secondary recovery and 188 experiments were conducted to evaluate tertiary recovery, for sandstone reservoirs. Although the incremental recovery potential in carbonate reservoirs is greater than in sandstones, only a few imbibition and coreflooding experiments have been conducted. The simulator and recovery mechanisms presented by Aladasani et al. (2012) are used and their suitability and validity to low salinity waterflooding in carbonate reservoirs has been confirmed. This has been achieved by comparing simulated LSWF secondary and tertiary recoveries with published coreflooding experiments. Furthermore, the prediction profiler in JMP was used to examine incremental recovery for the following variables: (a) acid number and interfacial tension (IFT) sensitivities, and (b) 2 nd stage injected brine and 3 rd stage injected brine anion contents. In weak water-wet conditions, the incremental recovery is driven by low capillary pressures, and the underlining recovery mechanism is the increase in oil relative permeability. Therefore, wettability modification is ideal when achieved by shifting the wetting state from oil-wet or water-wet to a maintained intermediate wetting condition irrespective of the injected brine salinity dilution. If the wettability is shifted to a strong water-wet system, then it would be more favorable to use brine with anions to shift the wettability back to an intermediate wetting state. IFT has a bigger impact on LSWF in carbonate reservoirs; however, contact angle is more significant to the final oil recovery. Future work should consider studying the impact of cationic and anionic ions on coreflooding recovery separately and using cores with different initial wetting states, preferably strong oil-wet cores

    3D Simulation of Low Salinity, Polymer, Conventional, Water-Flooding & Combination IOR Methods -- Heterogeneous & Varying Wetting Conditions

    No full text
    In this paper a five spot well patterns is used to study Low Salinity, Polymer, Conventional, Water-flooding and the combination of Polymer flooding and LSWF. The aforementioned cases are applied under different wetting conditions. Oil recovery is a function of reservoir forces. Effective IOR implementation requires the proactive identification and contribution of the dominating reservoir forces, over the course of the field development. The work in this paper uses a validated, compositional simulator in addition to validated relative permeability and capillary formulations to simulate LSWF, PF, Conventional, Water-flooding and combination of PF + LSWF in a multi-dimensional, anisotropic and aerially heterogeneous model, under various wetting conditions. Wettability modification is also simulated using start and end relative permeability, captured and validated from literature. The initial wetting state is an important criterion for LSWF. The incremental recovery in oil-wet systems, or typical carbonate reservoirs, is more rapid and thus requires less dilution of the injected brine salinity. In addition, simulation results indicate substantial un-swept quantities of available oil saturation. Therefore, the role of polymer flooding is examined along with conventional water-flooding in wetting conditions where LSWF may not achieve significant incremental recovery. LSWF is not effective in intermediate wetting conditions and Polymer flooding yields higher recovery factors in all water wet conditions. The impact of reservoir damage has an adverse effect on the development\u27s recovery factor and polymer flooding yields the highest incremental recovery in case of low permeability formations. In oil wet conditions the performance of PF and LSWF is similar especially in weak oil wet systems due to the equal contribution of their respective displacement efficiencies. In strong oil-wet conditions the combination of PF + LSWF yields the highest recovery factor. The wetting conditions, formation heterogeneity and permeability magnitude all impact IOR selection and suggest that each oil reservoir has a unique ionic environment that changes naturally and by human intervention, therefore it is important to study different IOR methods at different stages of the field development

    Studying Low-Salinity Waterflooding Recovery Effects in Sandstone Reservoirs

    No full text
    Numerous core-flooding experiments have shown that low-salinity water flooding (LSWF) could improve oil recovery in sandstone reservoirs. However, LSWF recovery effects remain highly contentious primarily because of the absence of crucial boundary conditions (boundary conditions are defined throughout the paper as the initial and final, contact angle and interfacial tension values). The objective of this paper is to conduct a parametric study using statistical analysis and simulation to measure the sensitivities of LSWF recovery effects in sandstone reservoirs. The summary of 411 core-flooding experiments discussed in this paper highlights the extent and consistency in reporting boundary conditions, which has two implications for statistical analysis: (1) the statistical correlations of the residual oil saturation to chlorite (0.7891) are strong, whereas the statistical correlations of the residual oil saturation to kaolinite (0.4399) contents, as well as to the wettability index (0.3890), are comparably lower, the majority of dataset entries are missing, and no prediction model can be generated; (2) if a prediction model is generated without clay content values and a wettability index, even though LSWF effects emphasizes wettability modification by virtue of oil aging time and the strong influence of brine cation and divalent ion concentrations on Sor, the prediction model\u27s regression curve and confidence level are poor. Reservoir simulations conducted to examine LSWF recovery sensitivities conclude that LSWF recovery effects are governed based on the initial and final wetting states. In all wetting states except for weak water-wet conditions, the increase in oil relative permeability is the underlining recovery effect. In weak water-wet conditions, LSWF incremental recovery is driven by low capillary pressures. In weak oil-wet conditions, the secondary LSWF recovery effect is the change of the non-wetting phase to oil. In all wetting states, an appreciable decrease in interfacial tension (IFT) is realized at the breakthrough recovery. The decrease in IFT is the primary recovery effect in strong water-wet conditions

    Study on Gas Permeability in Nano Pores of Shale Gas Reservoirs

    No full text
    Producing gas from shale gas reservoirs has played an increasingly important role in the volatile energy industry over recent years in North America for considerable volume of natural gas stored in the reservoirs. Unlike conventional gas reservoirs, the gas flow in shale reservoirs is a complex multi-scale flow process and has special flow mechanisms. Most importantly, the shale gas reservoir contains a large portion of nano pores. The study of flow in nano pores is essential for accurate shale gas numerical simulation. However, there is still not a comprehensive study in understanding how gas flows in nano pores. In this paper, based on the advection-diffusion model, we constructed a new mathematical model to characterize gas flow in nano pores. We derived a new apparent permeability expression based on advection and Knudsen diffusion. A comprehensive coefficient in characterizing the flow process was proposed. Simulation results were verified against the experimental data for gas flow through nano membranes. By changing the comprehensive coefficient, we found the best candidate for the case of Argon with membrane pore diameter 235 nm. We verified the model using different gases (Oxygen, Argon) and different pore diameters (235 nm, 220 nm). The comparison shows that the new model matches the experimental data very closely. Additionally, we compared our results with experimental data, Knudsen/Hagen-Poiseuille analytical solution, and existing researcher\u27s work. The results show that this study yielded a more reliable solution. For shale gas simulation where gas flowing in nano pores plays a critical role, the results from this work will made the simulation more accurate and reliable

    Time-Varying Modal Parameters Identification by Subspace Tracking Algorithm and Its Validation Method

    No full text
    This article presents a time-varying modal parameter identification method based on the novel information criterion (NIC) algorithm and a post-process method for time-varying modal parameter estimation. In the practical application of the time-varying modal parameter identification algorithm, the identified results contain both real modal parameters and aberrant ones caused by the measurement noise. In order to improve the quality of the identified results as well as sifting and validating the real modal parameters, a post-process procedure based on density-based spatial clustering of applications with noise (DBSCAN) algorithm is introduced. The efficiency of the proposed approach is first verified through a numerical simulation of a cantilever Euler-Bernoulli beam with a time-varying mass. Then the proposed approach is experimentally demonstrated by composite sandwich structure in a time-varying high temperature environment. The identified results illustrate that the proposed approach can obtain real modal frequencies in low signal-to-noise ratio (SNR) scenarios
    corecore