3 research outputs found

    Fast and Accurate Reduced-Order Modeling of a MOOSE-based Additive Manufacturing Model with Operator Learning

    Full text link
    One predominant challenge in additive manufacturing (AM) is to achieve specific material properties by manipulating manufacturing process parameters during the runtime. Such manipulation tends to increase the computational load imposed on existing simulation tools employed in AM. The goal of the present work is to construct a fast and accurate reduced-order model (ROM) for an AM model developed within the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework, ultimately reducing the time/cost of AM control and optimization processes. Our adoption of the operator learning (OL) approach enabled us to learn a family of differential equations produced by altering process variables in the laser's Gaussian point heat source. More specifically, we used the Fourier neural operator (FNO) and deep operator network (DeepONet) to develop ROMs for time-dependent responses. Furthermore, we benchmarked the performance of these OL methods against a conventional deep neural network (DNN)-based ROM. Ultimately, we found that OL methods offer comparable performance and, in terms of accuracy and generalizability, even outperform DNN at predicting scalar model responses. The DNN-based ROM afforded the fastest training time. Furthermore, all the ROMs were faster than the original MOOSE model yet still provided accurate predictions. FNO had a smaller mean prediction error than DeepONet, with a larger variance for time-dependent responses. Unlike DNN, both FNO and DeepONet were able to simulate time series data without the need for dimensionality reduction techniques. The present work can help facilitate the AM optimization process by enabling faster execution of simulation tools while still preserving evaluation accuracy.Comment: 28 pages, 18 figures, 4 table

    Enabling scientific machine learning in MOOSE using Libtorch

    No full text
    A neural-network-based machine learning interface has been developed for the Multiphysics Object-Oriented Simulation Environment (MOOSE). The interface relies on Libtorch, the C++ front-end of PyTorch, and enables an online interaction between modern machine learning algorithms and all the existing simulation, modeling, and analysis processes available in MOOSE. New capabilities in MOOSE include the native generation and training of artificial neural networks together with options to load pretrained neural networks in TorchScript format. Furthermore, the MOOSE stochastic tools module (MOOSE-STM) has been enhanced with neural network-based surrogate and reduced-order model generation options for efficient stochastic analyses. Lastly, a reinforcement learning capability has been added to MOOSE-STM for the interactive control and optimization of complex multiphysics problems
    corecore