13 research outputs found

    Stability Analysis of Three-Dimensional Tunnel Face Considering Linear and Nonlinear Strength in Unsaturated Soil

    No full text
    The shear strength of unsaturated soils exhibits significant nonlinearity, while previous studies often simplified it with linear strength models. The objective of this paper is to investigate the distinctions in the stability of three-dimensional (3D) tunnel faces when using linear and nonlinear strength models. A new 3D rotational failure mechanism and an extended form of the Mohr–Coulomb (M-C) failure criterion were integrated into the kinematically limited analysis (KLA) framework to describe the failure characteristics of tunnel faces. Subsequently, the factor of safety (FS) of the 3D tunnel faces was calculated using the strength reduction method (SRM). In the discussion section, the impacts of nonlinear shear strength, matric suction in the unsaturated soils, and the 3D geometric parameters of the tunnel on the stability of the tunnel face were analyzed. The outcomes indicate that, in unsaturated soil conditions, diverse nonlinear strength calculation models and soil types exert disparate influences on the FS of 3D tunnel faces. The main novelty of this study lies in establishing an effective method for assessing the stability of tunnel faces in unsaturated soils

    Impossible Differential Distinguishers of Two Generalized Feistel Structures

    No full text
    Generalized Feistel structures are widely used in the design of block ciphers. In this paper, we focused on retrieving impossible differentials for two kinds of generalized Feistel structures: CAST256-like structure with Substitution-Permutation (SP) or Substitution-Permutation-Substitution (SPS) round functions (named CAST256SP and CAST256SPS, respectively) and MARS-like structure with SP/SPS round function (named MARSSP and MARSSPS, respectively). Known results show that for bijective round function, CAST256-like structures and MARS-like structures have (m2−1) and (2m−1) rounds impossible differentials, respectively. By our observation, there existed (m2+m) rounds impossible differentials in CAST256SP and (3m−3) rounds impossible differentials in MARSSPS (this result does not require the P layer to be invertible). When the diffusion layer satisfied some special conditions, CAST256SPS had (m2+m−1) rounds impossible differentials and MARSSPS had (3m−3) rounds impossible differentials

    Single-Molecule Real-Time Sequencing of the Madhuca pasquieri (Dubard) Lam. Transcriptome Reveals the Diversity of Full-Length Transcripts

    No full text
    Madhuca pasquieri (Dubard) Lam. is a tree on the International Union for Conservation of Nature Red List and a national key protected wild plant (II) of China, known for its seed oil and timber. However, lacking of genomic and transcriptome data for this species hampers study of its reproduction, utilization, and conservation. Here, single-molecule long-read sequencing (PacBio) and next-generation sequencing (Illumina) were combined to obtain the transcriptome from five developmental stages of M. pasquieri. Overall, 25,339 transcript isoforms were detected by PacBio, including 24,492 coding sequences (CDSs), 9440 simple sequence repeats (SSRs), 149 long non-coding RNAs (lncRNAs), and 182 alternative splicing (AS) events, a majority was retained intron (RI). A further 1058 transcripts were identified as transcriptional factors (TFs) from 51 TF families. PacBio recovered more full-length transcript isoforms with a longer length, and a higher expression level, whereas larger number of transcripts (124,405) was captured in de novo from Illumina. Using Nr, Swissprot, KOG, and KEGG databases, 24,405 transcripts (96.31%) were annotated by PacBio. Functional annotation revealed a role for the auxin, abscisic acid, gibberellin, and cytokinine metabolic pathways in seed germination and post-germination. These findings support further studies on seed germination mechanism and genome of M. pasquieri, and better protection of this endangered species

    Exposure to ambient air pollution and metabolic dysfunction-associated fatty liver disease: Findings from over 2.7 million adults in Northwestern China

    No full text
    Ambient air pollutants exposures may lead to aggravated Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD). However, there is still a scarcity of empirical studies that have rigorously estimated this association, especially in regions where air pollution is severe. To fill in the literature gap, we conducted a cross-sectional study involving 2711,207 adults living in five regions of southern Xinjiang Uyghur Autonomous Region in 2021. Using a Space-Time Extra-Trees model, we assessed the four-year (2017–2020) average concentrations of particulate matter with aerodynamic diameter ≤1 µm (PM1), particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with aerodynamic diameter ≤10 µm (PM10), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO), and then assigned these values to the participants. Generalized linear mixed models were employed to examine the relationships between air pollutants and the prevalence of MAFLD, with adjustment for multiple confounding factors. The odds ratios and 95% confidence intervals of MAFLD were 2.002 (1.826–2.195), 1.133 (1.108–1.157), 1.034 (1.027–1.040), 1.077 (1.023–1.134), 2.703 (2.322–3.146) and 1.033 (1.029–1.036) per 10 µg/m3 increase in the 4-year average PM1, PM2.5, PM10, O3, SO2 and CO exposures, respectively. The robustness of the findings was confirmed by a series of sensitivities. In summary, long-term exposure to ambient air pollutants was associated with increased odds of MAFLD, particularly in males and individuals with unhealthy lifestyles

    Histamine H1 Receptors in Neural Stem Cells Are Required for the Promotion of Neurogenesis Conferred by H3 Receptor Antagonism following Traumatic Brain Injury

    No full text
    Summary: The neurological recovery following traumatic brain injury (TBI) is limited, largely due to a deficiency in neurogenesis. The present study explores the effects of histamine H3 receptor (H3R) antagonism on TBI and mechanisms related to neurogenesis. H3R antagonism or H3R gene knockout alleviated neurological injury in the late phase of TBI, and also promoted neuroblast differentiation to enhance neurogenesis through activation of the histaminergic system. Histamine H1 receptor, but not H2 receptor, in neural stem cells is shown to be essential for this promotion by using Hrh1fl/fl;NestinCreERT2 and Hrh2fl/fl;NestinCreERT2 mice. Moreover, increase in mature and functional neurons at the penumbra area conferred by H3R antagonism was abrogated in Hrh1fl/fl;NestinCreERT2 mice. Taken together, H3R antagonism provides neuroprotection against TBI in the late phase through the promotion of neurogenesis, and the H1 receptor in neural stem cells is required for this action. H3R may serve as a new target for clinical treatment of TBI. : Hu and colleagues show that histamine H3R antagonism provides neuroprotection against traumatic brain injury in the late phase through the promotion of neurogenesis. Through specific deletion histamine receptors in neural stem cells, they found that the H1 receptor in neural stem cells is required for this action. H3R antagonists can be the potential candidate drugs for the therapy. Keywords: differentiation, histamine H3 receptor, histamine H1 receptor, neurogenesis, neuroprotection, traumatic brain injur

    Three-Dimensional sp2 Carbon-Linked Covalent Organic Frameworks for Bioresponsive Fluorescence Imaging

    No full text
    Three-dimensional (3D) covalent organic frameworks (COFs) are crystalline porous polymers with potential in numerous high-tech applications, but the linkages involved in their synthesis are still rather limited. Herein we report the first case of 3D sp2 carbon-linked COFs fabricated by the formation reaction of C=C bonds and their application in bioresponsive fluorescence imaging. These new COFs, namely JUC-580 and JUC-581, showed high stability and excellent light-emitting properties in solid state and dispersed in various solvents. Furthermore, we investigated the potential application of JUC-581 for a drug carrier combined with bioresponsive fluorescence imaging. The results indicated that 3D sp2 carbon-linked COFs are not only potential drug-loaded and sustained release materials but also promising cell fluorescent stains. This study expands the structural categories of 3D COFs based on different linkages, and promotes their prospective applications for biomedicine and fluorescent materials
    corecore