5 research outputs found

    Limited contributions of plant pathogens to density‐dependent seedling mortality of mast fruiting Bornean trees

    Get PDF
    Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density‐dependent mortality of conspecific seedlings (C‐NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper‐diversity in many tropical forests. A key question is whether fungal pathogen‐mediated C‐NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C‐NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species‐rich forests of South East Asia. We demonstrate species‐specific responses of seedlings to fungicide and density treatments, generating weak negative density‐dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen‐Connell mechanisms structure the plant communities of this globally important forest type

    Monitoring lianas from space: using Sentinel-2 imagery to observe liana removal in logged tropical forests

    Get PDF
    Liana removal – the cutting of over-abundant woody climbing plants (lianas) – has the potential to substantially increase tree growth and biomass accumulation across millions of hectares of degraded tropical forest. Satellite imagery could provide data capable of observing the effect of liana removal on the forest canopy, enabling the large-scale monitoring and validation of liana removal, which remains a key hurdle to its widespread implementation. Using a 320-ha liana removal experiment in Sabah, Malaysian Borneo, we tested whether a time series of Sentinel-2 images could observe the canopy signature of liana removal. Calculating a range of metrics derived from the Normalized Burn Ratio – a vegetation index based on spectral reflectance that differentiates leaf from non-leaf – we quantified satellite-derived canopy disturbance and fragmentation across a range of liana removal intensities and examined how canopy disturbance changed in the 12-months following removal treatments. We find that liana removal significantly increases canopy disturbance and fragmentation metrics one month after removal, with partial removal having a smaller effect than complete removal. The impact of liana removal on the canopy metrics declined over time, with measures of canopy disturbance and fragmentation largely indistinguishable from control forest within 12-months of treatment. Our findings evidence that freely available satellite imagery can be used to efficiently monitor large-scale liana removal applied at a range of intensities and suggest that partial liana removal could significantly reduce canopy disturbance of this restoration method

    Logging cuts the functional importance of invertebrates in tropical rainforest

    Get PDF
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests
    corecore