2 research outputs found

    Identification of Quadratic Volterra Polynomials in the “Input–Output” Models of Nonlinear Systems

    No full text
    In this paper, we propose a new algorithm for constructing an integral model of a nonlinear dynamic system of the “input–output” type in the form of a quadratic segment of the Volterra integro-power series (polynomial). We consider nonparametric identification of models using physically realizable piecewise linear test signals in the time domain. The advantage of the presented approach is to obtain explicit formulas for calculating the transient responses (Volterra kernels), which determine the unique solution of the Volterra integral equations of the first kind with two variable integration limits. The numerical method proposed in the paper for solving the corresponding equations includes the use of smoothing splines. An important result is that the constructed identification algorithm has a low methodological error

    Identification of Quadratic Volterra Polynomials in the “Input–Output” Models of Nonlinear Systems

    No full text
    In this paper, we propose a new algorithm for constructing an integral model of a nonlinear dynamic system of the “input–output” type in the form of a quadratic segment of the Volterra integro-power series (polynomial). We consider nonparametric identification of models using physically realizable piecewise linear test signals in the time domain. The advantage of the presented approach is to obtain explicit formulas for calculating the transient responses (Volterra kernels), which determine the unique solution of the Volterra integral equations of the first kind with two variable integration limits. The numerical method proposed in the paper for solving the corresponding equations includes the use of smoothing splines. An important result is that the constructed identification algorithm has a low methodological error
    corecore