4 research outputs found

    Supercapacitor Properties of rGO-TiO2 Nanocomposite in Two-component Acidic Electrolyte

    No full text
    The electrochemical properties of the highly porous reduced graphene oxide/titanium dioxide (rGO/TiO2) nanocomposite were studied to estimate the possibility of using it as a supercapacitor electrode. Granular aerogel rGO/TiO2 was used as an initial material for the first time of manufacturing the electrode. For the aerogel synthesis, industrial TiO2 Hombikat UV100 with a high specific surface area and anatase structure was used, and the aerogel was carried out with hydrazine vapor. Porous structure and hydrophilic–hydrophobic properties of the nanocomposite were studied with a method of standard contact porosimetry. This is important for a supercapacitor containing an aqueous electrolyte. It was found that the hydrophilic specific surface area of the nanocomposite was approximately half of the total surface area. As a result of electrochemical hydrogenation in the region of zero potential according to the scale of a standard hydrogen electrode, a reversible Faraday reaction with high recharge rate (exchange currents) was observed. The characteristic charging time of the indicated Faraday reaction does not exceed several tens of seconds, which makes it possible to consider the use of this pseudocapacitance in the systems of fast energy storage such as hybrid supercapacitors. Sufficiently high limiting pseudo-capacitance (about 1200 C/g TiO2) of the reaction was obtained

    Supercapacitor Properties of rGO-TiO<sub>2</sub> Nanocomposite in Two-component Acidic Electrolyte

    No full text
    The electrochemical properties of the highly porous reduced graphene oxide/titanium dioxide (rGO/TiO2) nanocomposite were studied to estimate the possibility of using it as a supercapacitor electrode. Granular aerogel rGO/TiO2 was used as an initial material for the first time of manufacturing the electrode. For the aerogel synthesis, industrial TiO2 Hombikat UV100 with a high specific surface area and anatase structure was used, and the aerogel was carried out with hydrazine vapor. Porous structure and hydrophilic–hydrophobic properties of the nanocomposite were studied with a method of standard contact porosimetry. This is important for a supercapacitor containing an aqueous electrolyte. It was found that the hydrophilic specific surface area of the nanocomposite was approximately half of the total surface area. As a result of electrochemical hydrogenation in the region of zero potential according to the scale of a standard hydrogen electrode, a reversible Faraday reaction with high recharge rate (exchange currents) was observed. The characteristic charging time of the indicated Faraday reaction does not exceed several tens of seconds, which makes it possible to consider the use of this pseudocapacitance in the systems of fast energy storage such as hybrid supercapacitors. Sufficiently high limiting pseudo-capacitance (about 1200 C/g TiO2) of the reaction was obtained

    Combined Separator Based on a Porous Ion-Exchange Membrane for Zinc–Halide Batteries

    No full text
    In this work, we report on a comparative analysis of the bromine permeability for three separator groups under the operating conditions of a non-flow zinc–bromine battery. A new method for the synthesis of porous heterogeneous membranes based on a cation-exchange resin followed by treatment with tetrabutylammonium bromide is proposed. It was shown that the modified membrane significantly reduced the bromine permeability (crossover) with an acceptable increase in the ionic conductivity of the separator group. Leakage currents not exceeding 10–20 µA/cm2 were achieved, and the Coulomb efficiency was over 90%. The ionic conductivity (at AC) of a membrane soaked with water was compared for different pretreatment conditions. The frequency dependence of the membrane resistance is shown. The features of the conduction mechanism of the modified membrane are discussed
    corecore