4 research outputs found

    Functionalization of Porphyrins Using Metal-Catalyzed C–H Activation

    No full text
    The review is devoted to the C–H functionalization of porphyrins. Porphyrins exhibit the properties of organic semiconductors, light energy converters, chemical and electrochemical catalysts, and photocatalysts. The review describes the iridium- and palladium-catalyzed direct functionalization of porphyrins, with more attention given to the results obtained in our laboratory. The development and improvement of synthetic methods that do not require preliminary modification of the substrate with various functional groups are extremely important for the preparation of new organic materials based on porphyrins. This makes it possible to simplify the synthetic procedure, to make the synthesis more economical, environmentally safe, and simple to perform

    Destruction of Chitosan and Its Complexes with Cobalt(II) and Copper(II) Tetrasulphophthalocyanines

    No full text
    Chitosan is a naturally occurring polysaccharide derived from chitin with a wide range of uses. Phthalocyanines are macroheterocyclic compounds that have a number of useful properties such as coloring and catalytic and antioxidant activity. Phthalocyanines are able to immobilize on chitosan, forming complexes with new useful properties. In this work, we evaluated the ability of phthalocyanines to increase the thermal stability of chitosan. Chitosan (CS) forms complexes with copper(II)-(CuPc) and cobalt(II)-(CoPc) tetrasulphophthalocyanines. The processes of destruction of chitosan (CS) and its complexes with sulphophthalocyanines CuPc and CoPc in oxidizing and inert atmospheres have been studied. It was established that, regardless of the atmosphere composition, the first chemical reactions taking place in the studied systems are elimination reactions. The latter ones in the case of chitosan and complex CS-CuPc lead to the formation of spatially crosslinked polymer structures, and it causes the release of CuPc from the polymer complex. It was found that in the case of CS-CoPc elimination reactions did not lead to the formation of crosslinked polymer structures but caused the destruction of the pyranose rings with a partial release of CoPc. Metallophthalocyanines showed antioxidant properties in the composition of complexes with chitosan, increasing the temperature of the beginning of glycosidic bond cleavage reaction by 30–35 °C in comparison with the similar characteristics for chitosan
    corecore