19 research outputs found

    Sponge cities and sustainable drainage systems: sharing best practice in China and the UK

    Get PDF
    Flooding from rivers, surface water and the sea is a major hazard in many cities of the world and is expected to increase in the future due to climate change. With funding from the UK-China Urban Flooding Research Impact Programme, part of the UK-China Newton Fund, researchers and practitioners from both countries are collaborating on a project which focuses on surface water flooding and aims to enhance technical co-operation and knowledge-sharing in urban flood risk management. A comparison of current approaches to urban flood risk management in China and the UK is presented, and a case study of the benefits of Sponge City construction in the city of Wuhan, China is used by way of demonstration. Interventions to increase infiltration rates and on-site storage prove most effective for the 1-year return period, but have a more limited effect as flood event rarity increases. The paper discusses how similar results have been found in the UK for case studies of Sustainable Drainage Systems (SuDS), either installed in new urban developments or retrofitted in older ones. These studies also recognise the multiple benefits brought by the installation of green infrastructure, particularly in terms of community engagement and well-being

    Quorum sensing: cell-to-cell communication in Saccharomyces cerevisiae

    Get PDF
    Quorum sensing (QS) is one of the most well-studied cell-to-cell communication mechanisms in microorganisms. This intercellular communication process in Saccharomyces cerevisiae began to attract more and more attention for researchers since 2006, and phenylethanol, tryptophol, and tyrosol have been proven to be the main quorum sensing molecules (QSMs) of S. cerevisiae. In this paper, the research history and hotspots of QS in S. cerevisiae are reviewed, in particular, the QS system of S. cerevisiae is introduced from the aspects of regulation mechanism of QSMs synthesis, influencing factors of QSMs production, and response mechanism of QSMs. Finally, the employment of QS in adaptation to stress, fermentation products increasing, and food preservation in S. cerevisiae was reviewed. This review will be useful for investigating the microbial interactions of S. cerevisiae, will be helpful for the fermentation process in which yeast participates, and will provide an important reference for future research on S. cerevisiae QS

    Cell metabolism-based optimization strategy of CAR-T cell function in cancer therapy

    Get PDF
    Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR)-modified T cells has revolutionized the field of immune-oncology, showing remarkable efficacy against hematological malignancies. However, its success in solid tumors is limited by factors such as easy recurrence and poor efficacy. The effector function and persistence of CAR-T cells are critical to the success of therapy and are modulated by metabolic and nutrient-sensing mechanisms. Moreover, the immunosuppressive tumor microenvironment (TME), characterized by acidity, hypoxia, nutrient depletion, and metabolite accumulation caused by the high metabolic demands of tumor cells, can lead to T cell “exhaustion” and compromise the efficacy of CAR-T cells. In this review, we outline the metabolic characteristics of T cells at different stages of differentiation and summarize how these metabolic programs may be disrupted in the TME. We also discuss potential metabolic approaches to improve the efficacy and persistence of CAR-T cells, providing a new strategy for the clinical application of CAR-T cell therapy

    Fractal Analysis of Local Activity and Chaotic Motion in Nonlinear Nonplanar Vibrations for Cantilever Beams

    No full text
    Many problems in practical engineering can be simplified as the cantilever beam model, which is generally studied by theoretical analysis, experiment, and numerical simulation. This paper discusses the local activity of the nonlinear nonplanar motion of a cantilever beam at the equilibrium point. Firstly, the equilibrium point of the model and the Jacobian matrix have been calculated. The stability of the characteristic root corresponding to the characteristic polynomial has been analyzed. Secondly, the corresponding complexity function of the model at the equilibrium point has been given. Then, the local activity region of the model at the equilibrium point can be obtained by using the theory of the local activity. Based on the actual engineering research background, the damping coefficient is generally taken as 0 c < 1. The cantilever beam model is the local activity at the equilibrium point only if the parameters of the model satisfy a certain condition. In the numerical simulation, it is found that when the proper parameters are selected in the local activity region, the cantilever beam can exhibit different types of chaotic motion. The local activity theory provides a theoretical basis for the parameter selection of the chaotic motion in the cantilever beam

    Integrating two landscape connectivity models to quantify the priorities of wetland conservation and reclamation restoration at multiple scales: A case study in the Yellow River Delta

    No full text
    Coastal wetlands have been globally fragmented by reclamation activities, leading to reduced connectivity, which play an important role in maintaining the integrity of ecosystem functioning. However, practical wetland management rarely considers the connectivity effects of reclamation. How to identify hot-spot targets for wetland protection and restoration aimed to improve wetland connectivity presents a big challenge in the decision-making process. Here, we integrated GIS-based graph theory model and circuit theory model to evaluate the influences of coastal reclamation on wetland connectivity and identify conservation priority and restoration priority at multiple (patch, corridor and key node) scales, respectively, in the Yellow River Delta (YRD), China. The results indicated that since 1980s, reclamation has significantly reduced the area and landscape connectivity of different wetlands in this delta, especially saline marshes. According to important contributions of individual patches to the overall landscape connectivity, 515.36 km(2) of natural wetland and 430 km(2) of reclaimed wetland were identified to be protected and restored primarily. Our models also showed that coastal reclamation increased the resistance of species movement among wetland habitats. Potential corridors crossing natural wetlands (674.4 km) and crossing the reclaimed wetlands (21.92 km) should be protected and restored. In addition, 83 key ecological nodes such as pinch points (9.96 km(2)) and barrier points (46.54 km(2)) should be given priority conservation and restoration, respectively. This work answers the question of where and how to protect and restore wetland hotspots to improve landscape connectivity. The idea of optimizing the replacement of patches, corridors and key ecological nodes in the YRD has guiding significance for wetland management and biodiversity conservation in other regions with poor data

    TOB1 suppresses proliferation in K‐Ras wild‐type pancreatic cancer

    No full text
    Abstract TOB1 participates in various kinds of cancers. However, its role in pancreatic cancer has rarely been reported. In this study, we explored the expression and mechanisms of TOB1 in regulating the malignant phenotype of pancreatic cancer cells. TOB1 expression was determined by data mining and immunohistochemistry (IHC), and its localization was observed by immunofluorescence. CCK‐8 cell proliferation, colony formation, flow cytometric, transwell migration, and Western blot (WB) assays were used to examine how it impacts the malignant phenotype of pancreatic cancer. Furthermore, Foxa2 binding to TOB1 was tested by dual‐luciferase reporter assays, and RNA‐Seq was performed to identify signaling pathways. We found TOB1 was downregulated in pancreatic cancer tissues and was mainly located in the cytoplasm. TOB1 overexpression reduced the proliferation of K‐Ras wild‐type pancreatic cancer cells but made no difference to cell migration and invasion. Foxa2 overexpression significantly enhanced TOB1 promoter activity. Moreover, overexpressing TOB1 substantially enriched the calcium pathway in K‐Ras wild‐type pancreatic cancer cells. In conclusion, TOB1 may suppress the proliferation of K‐Ras wild‐type pancreatic cancer cells by regulating calcium pathway genes

    A Systematic Investigation of Lipid Transfer Proteins Involved in Male Fertility and Other Biological Processes in Maize

    No full text
    Plant lipid transfer proteins (LTPs) play essential roles in various biological processes, including anther and pollen development, vegetative organ development, seed development and germination, and stress response, but the research progress varies greatly among Arabidopsis, rice and maize. Here, we presented a preliminary introduction and characterization of the whole 65 LTP genes in maize, and performed a phylogenetic tree and gene ontology analysis of the LTP family members in maize. We compared the research progresses of the reported LTP genes involved in male fertility and other biological processes in Arabidopsis and rice, and thus provided some implications for their maize orthologs, which will provide useful clues for the investigation of LTP transporters in maize. We predicted the functions of LTP genes based on bioinformatic analyses of their spatiotemporal expression patterns by using RNA-seq and qRT-PCR assays. Finally, we discussed the advances and challenges in substrate identification of plant LTPs, and presented the future research directions of LTPs in plants. This study provides a basic framework for functional research and the potential application of LTPs in multiple plants, especially for male sterility research and application in maize

    ATP-Binding Cassette G Transporters and Their Multiple Roles Especially for Male Fertility in <i>Arabidopsis</i>, Rice and Maize

    No full text
    ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize

    MiR542-3p Regulates the Epithelial-Mesenchymal Transition by Directly Targeting BMP7 in NRK52e

    No full text
    Accumulating evidence demonstrated that miRNAs are highly involved in kidney fibrosis and Epithelial-Eesenchymal Transition (EMT), however, the mechanisms of miRNAs in kidney fibrosis are poorly understood. In this work, we identified that miR542-3p could promote EMT through down-regulating bone morphogenetic protein 7 (BMP7) expression by targeting BMP7 3′UTR. Firstly, real-time PCR results showed that miR542-3p was significantly up-regulated in kidney fibrosis in vitro and in vivo. Moreover, Western blot results demonstrated that miR542-3p may promote EMT in the NRK52e cell line. In addition, we confirmed that BMP7, which played a crucial role in anti-kidney fibrosis and suppressed the progression of EMT, was a target of miR542-3p through Dual-Luciferase reporter assay, as did Western blot analysis. The effects of miR542-3p on regulating EMT could also be suppressed by transiently overexpressing BMP7 in NRK52e cells. Taken together, miR542-3p may be a critical mediator of the induction of EMT via directly targeting BMP7
    corecore