8 research outputs found

    When and how does leader humor promote customer-oriented organizational citizenship behavior in hotel employees?

    No full text
    This study explores whether leader humor can encourage staff to exceed job expectations in their positive behavior toward customers, even in the notoriously stressful context of the hospitality industry. Based on our findings, leaders who use humor are more likely to prompt employees to engage in customer-oriented organizational citizenship behavior (OCB). Leader humor affects customer-oriented OCB through the mediating effect of relational energy. In addition, employee traditionality and relational energy differentiation moderate the process. Using time-lagged data collected from 456 employees in 71 teams in China’s hotel industry, this study adds significant knowledge to the under-researched area of humor and leader humor in the hospitality industry. The findings suggest that hospitality leaders can implement humor to obtain positive effects by raising relational energy and triggering customer-oriented OCB, particularly among less-traditional workers and in situations of low relational energy differentiation

    Comparison of the Effects of High Pressure Processing, Pasteurization and High Temperature Short Time on the Physicochemical Attributes, Nutritional Quality, Aroma Profile and Sensory Characteristics of Passion Fruit Purée

    No full text
    The study investigated the effects of high-pressure processing (HPP) (600 MPa/5 min), pasteurization (PT) (85 °C/30 s), and high-temperature short time (HTST) (110 °C/8.6 s) on physicochemical parameters (sugar, acid, pH, TSS), sensory-related attributes (color, aroma compounds), antioxidants (phenolics, vitamin C, carotenoids, antioxidant capacity), and sensory attributes of yellow passion fruit purée (PFP). Compared to the PT and HTST, HPP obtained the PFP with better color, sugar, and organic acid profiles. Although PT was equally effective preservation of antioxidants and antioxidant capacity of PFP compared to HPP, high temperature inevitable resulted in the greater degradation of the aroma profile. The amounts of esters, alcohols, and hydrocarbon in PFP were significantly increased by 11.3%, 21.3%, and 30.0% after HPP, respectively. All samples were evaluated by a panel comprising 30 panelists according to standard QDA (quantitative descriptive analysis) procedure, and the result showed that HPP-treated PFP was rated the highest overall intensity score with 7.06 for its sensory attributes, followed by control (6.96), HTST (6.17), and PT (6.16). Thus, HPP is a suitable alternative technology for achieving the good sensory quality of PFP without compromising their nutritional properties

    Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches

    No full text
    Halide perovskite is one of the most promising semiconducting materials in a variety of fields such as solar cells, photodetectors, and light-emitting diodes. Lead halide perovskite single crystals featuring long diffusion length, high carrier mobility, large light absorption coefficient and low defect density, have been attracting increasing attention. Fundamental study of the intrinsic nature keeps revealing the superior optoelectrical properties of perovskite single crystals over their polycrystalline thin film counterparts, but to date, the device performance lags behind. The best power conversion efficiency (PCE) of single crystal-based solar cells is 21.9%, falling behind that of polycrystalline thin film solar cells (25.2%). The oversized thickness, defective surfaces, and difficulties in depositing functional layers, hinder the application of halide perovskite single crystals in optoelectronic devices. Efforts have been made to synthesize large-area single crystalline thin films directly on conductive substrates and apply defect engineering approaches to improve the surface properties. This review starts from a comprehensive introduction of the optoelectrical properties of perovskite single crystals. Then, the synthesis methods for high-quality bulk crystals and single-crystalline thin films are introduced and compared, followed by a systematic review of their optoelectronic applications including solar cells, photodetectors, and X-ray detectors. The challenges and strategical approaches for high-performance applications are summarized at the end with a brief outlook on future work

    Controllable Acceleration and Deceleration of Charge Carrier Transport in Metal-Halide Perovskite Single-Crystal by Cs-Cation Induced Bandgap Engineering

    No full text
    Charge carrier transport in materials is of essential importance for photovoltaic and photonic applications. Here, the authors demonstrate a controllable acceleration or deceleration of charge carrier transport in specially structured metal-alloy perovskite (MACs)PbI3 (MA= CH3NH3) single-crystals with a gradient composition of CsPbI3/(MA1−xCsx)PbI3/MAPbI3. Depending on the Cs-cation distribution in the structure and therefore the energy band alignment, two different effects are demonstrated: i) significant acceleration of electron transport across the depth driven by the gradient band alignment and suppression of electron–hole recombination, benefiting for photovoltaic and detector applications; and ii) decelerated electron transport and thus improved radiative carrier recombination and emission efficiency, highly beneficial for light and display applications. At the same time, the top Cs-layer results in hole localization in the top layer and surface passivation. This controllable acceleration and deceleration of electron transport is critical for various applications in which efficient electron–hole separation and suppressed nonradiative electron–hole recombination is demanded.</p

    Periodic nanostructures: Preparation, properties and applications

    No full text
    Periodic nanostructures, a group of nanomaterials consisting of single or multiple nano units/components periodically arranged into ordered patterns (e.g., vertical and lateral superlattices), have attracted tremendous attention in recent years due to their extraordinary physical and chemical properties that offer a huge potential for a multitude of applications in energy conversion, electronic and optoelectronic applications. Recent advances in the preparation strategies of periodic nanostructures, including self-assembly, epitaxy, and exfoliation, have paved the way to rationally modulate their ferroelectricity, superconductivity, band gap and many other physical and chemical properties. For example, the recent discovery of superconductivity observed in "magic-angle"graphene superlattices has sparked intensive studies in new ways, creating superlattices in twisted 2D materials. Recent development in the various state-of-the-art preparations of periodic nanostructures has created many new ideas and findings, warranting a timely review. In this review, we discuss the current advances of periodic nanostructures, including their preparation strategies, property modulations and various applications.</p
    corecore